Advertisement

Markovian Analysis of EEG Signal Dynamics in Obsessive-Compulsive Disorder

  • Alex A. Sergejew
  • Ah Chung Tsoi

Abstract

Electroencephalograph (EEG) signal dynamics of recordings taken during an unstructured “eyes closed” recording session from 13 patients with severe obsessive-compulsive disorder (OCD) and eleven normal control subjects were investigated using Markov modelling of an autoregressive representation of the EEG signal. Limited state transition dynamics were observed in the EEG of all subjects with OCD but in none of the controls. These findings are discussed in relation to hypothesized disturbances in mental state transitions in OCD.

Keywords

Hide Markov Model Normal Control Subject Prediction Error Variance Markovian Analysis Adaptive Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H., 1969, Fitting autoregressive models for prediction, -Annals Inst. of Statistical Mathematics 21: 243–247.MathSciNetMATHCrossRefGoogle Scholar
  2. Badalamenti, A. F., Langs, R. J. and Kessler. M., 1992, Stochastic progression of new states in psychotherapy, Statistics’ in Med. 11: 231–242.CrossRefGoogle Scholar
  3. Baum, L. E. and Petrie, T., 1966, Statistical inference for probabilistic functions of finite state Markov chains, Annals of Mathematical Statistics 37: 1554–1563.MathSciNetMATHCrossRefGoogle Scholar
  4. Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W., 1975, Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.MATHGoogle Scholar
  5. Bodenstein, G. and Praetorius, H. M., 1977, Feature extraction from the electroencephalogram by adaptive segmentation, Proc. IEEE 65: 642–652.CrossRefGoogle Scholar
  6. Bodenstein, G., Schneider, W. and Malsburg, C. V. D., 1985, Computerised EEG pattern classification and probability-density-function classification. Description of the method. Computers in Biol. & Med. 15: 297–313.CrossRefGoogle Scholar
  7. Bohlin, T., 1971, Analysis of EEG signals with changing spectra, IBM Systems Development Division, IBM Nordic Laboratory. Sweden, Technical Paper 18. 212.Google Scholar
  8. Bohlin, T., 1977, Analysis of EEG signals with changing spectra using a short-word Kalman estimator. Mathematical Biosciences 35: 221–259.MathSciNetMATHCrossRefGoogle Scholar
  9. Bourlard, H. and Wellekens, C. J., 1990, Links between Markov models and multilayer perceptrons, IEEE Trans. in PAMI 12:1167–1178.CrossRefGoogle Scholar
  10. Carr, V., 1983, The concept of clinical state in psychiatry: a review, Comprehensive Psychiatric 24: 370–391.CrossRefGoogle Scholar
  11. Cerutti, S., Liberati, D., Avanzini, G., Francesetti, S., and Panzica, F., 1986, Classification of the EEG during neurosurgery. Parametric identification and Kalman filtering compared, J. Thorned. Eng. 8: 244–254.Google Scholar
  12. Crowell, D. H., Jones, R. H., Kapuniai, L. E. and Leung, P., 1977, Autoregressive representation of infant EEG for the purpose of hypothesis testing and classification, EEG and Clin. Neurophys. 43: 317–324.CrossRefGoogle Scholar
  13. Dunn, G. and Skuse, D., 1981, The natural history of depression in general practice: stochastic models, Psychological Medicine 11: 755–764.CrossRefGoogle Scholar
  14. Epstein, A. W. and Bailine, S. H., 1971, Sleep and dream studies in obsessional neurosis with particular reference to epileptic states, Biological Psychiatry 4: 149.Google Scholar
  15. Fenwick, P. B. C., Mitchie, P., Dollimore, J. and Fenton, G. W., 1969, Application of the autoregressive model to EEG analysis, Aggressologie 10: 533–564.Google Scholar
  16. Flor-Henry, P., Yeudall, L. T., Koles, Z. J. and Howarth, B. G., 1979, Neuropsychological and power spectral EEG investigations of the obsessive-compulsive syndrome. Biological Psychiatry 14: 119–130.Google Scholar
  17. Forney, Jr.. G. D., 1973. The Viterbi algorithm, Proc. IEEE 61: 268–278.MathSciNetCrossRefGoogle Scholar
  18. Gath, I., Lehmann, D. and Bar-On, E., 1983, Fuzzy clustering of EEG signal and vigilance performance, Int. J. Neurosci. 20:303–312.CrossRefGoogle Scholar
  19. Gersch, W., 1970, Spectral analysis of EEG’s by autoregressive decomposition, Mathematical Biosciences 7: 205–222.MATHCrossRefGoogle Scholar
  20. Giannitrapani, D., 1985, The Electrophysiology of Intellectual Function. Basel: Karger.Google Scholar
  21. Horowitz, M. J., 1979, States of Mind. NY: Plenum Publishing.CrossRefGoogle Scholar
  22. Insell, T. R., Donnelly, E. F., Lalakea, M. L., Alterman, I. S. and Homan, S., 1983, Neurological and neuropsychological studies of patients with obsessive-compulsive disorder, Biological Psychiatry 18: 741–751.Google Scholar
  23. Isaksson, A., Wennberg, A. and Zetterberg, L. H., 1981, Computer analysis of EEG signals with parameteric models, Proc. IEEE 69: 451–461.CrossRefGoogle Scholar
  24. Jansen, B. H.. Hasman. A. and Lenten, R., 1981, Piecewise analysis of EEGs using AR-modelling and clustering, Comput. Biomed. Res. 14: 168–178.CrossRefGoogle Scholar
  25. Jenike, M. A. and Brotman, A. W., 1984, The EEG in obsessive-compulsive disorder, J. Clin. Psych. 45: 122–124.Google Scholar
  26. Jensen. B. H. and Cheng. W. K., 1988, Structural EEG analysis: an explorative study, lot. J. Biomed. Comput. 23: 221–237.CrossRefGoogle Scholar
  27. Juang, B. H. and Rabincr, L. R.. 1990, The segmental K-means algorithm for estimating parameters of hidden Markov models, IEEE Trans. in ASSP 38:1639–1641.CrossRefGoogle Scholar
  28. Kydd, R. R. and Wright, J. J., 1986, Mental phenomena viewed as changes of state in a finite-state machine. Australian and New Zealand J of Psychiatry 20: 158–165.CrossRefGoogle Scholar
  29. Lopes da Silva. F. H.. Dijk, A. and Smits, H., 1974, Detection of nonstationaritics in EEGs using the autoregression model–An application to the EEGs of epileptics. In: CEAN–Computerised EEG Analysis (Dolce. G. and Kunkel, H., eds), Stuttgart: Gustav Fischer Verlag, pp. 180–199.Google Scholar
  30. Malloy. R. Rassmussen. S.. Braden, W., and Haier. R. J., 1989. Topographic evoked potential mapping in obsessive-compulsive disorder: evidence of frontal lobe dysfunction, Psychiatry Res. 28: 63–71.CrossRefGoogle Scholar
  31. Marshall. A. W. and Goldhamer, H.. 1955. An application of Markov processes to the study of the epidemiology of mental disease. Am Statistical Assoc. J. March: 99–129.Google Scholar
  32. Meyne. S. P. and Tweedie, R. L., 1993. Markov Chains and Stochastic Stability. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  33. Mucciardi, A. N. and Gose. E. E., 1972. An automatic clustering algorithm and its applications to high-dimensional spaces, IEEE Trans. on SMC 2: 247–254.CrossRefGoogle Scholar
  34. Pacella, B. L., Potatin, P. and Nagler, S. H., 1944, Clinical and EEG studies in obsessive-compulsive states, Am. J. Psych. 100: 830–838.Google Scholar
  35. Perros. P., Young, E. S., Ritson, J. J., Price, G. W. and Mann, P., 1992, Power spectral EEG analysis and EEG variability in obsessive-compulsive disorder, Brain Topography 4: 187–192.CrossRefGoogle Scholar
  36. Plewis, I., 1985, Analysing Change: Measurement and Explanation Using Longitudinal Data. Chichester: Wiley.Google Scholar
  37. Remond, A. and Renault, B., 1972, La theorie des objects electrographiques, Rev EEG Neurophysiol. 3: 241–256.Google Scholar
  38. Rabiner, L. R. and Juang, B. H.. 1986, An introduction to hidden Markov models, IEEE ASSP Mag. 3 (1): 4–16.CrossRefGoogle Scholar
  39. Rockwell, F. V. and Simmons, D. J., 1947, The electroencephalogram and personality organization in the obsessive-compulsive reactions, Arch. Neur. and Psych. 57: 71–80.CrossRefGoogle Scholar
  40. Sergejew, A. A. and Tsoi, A. C., 1992, How many electrodes are enough? Insights from the application of the zero-delay frequency wavenumber spectral analysis of EEG and AEP. Pan Pacific Workshop on Brain Electric and Magnetic Topography. Melbourne, Australia, February 17–18 1992; Brain Topography 5: 65 (abstract).Google Scholar
  41. Shagass, C., Shagass, C., Roemer, R. A., Straumanis, J. J., and Josiassen, R. C., 1984. Psychiatric diagnostic discriminations with combinations of quantitative EEG variables, Br. J. Psych. 144: 581–592.CrossRefGoogle Scholar
  42. Torello. M. W.. 1989, Topographic mapping of EEG and evoked potentials in psychiatry: Delusions, illusions and realities. Brain Topography 1: 157–174.CrossRefGoogle Scholar
  43. Tsoi, A. C.. 1987, A new method for analysing electroencephalogram (EEG) signals. Proc. of the Int. Symposium on Signal Processing and its Applications, Brisbane, Australia, August 1987. 2: 803–807.Google Scholar
  44. Tsoi, A. C.. 1988. Parametrisation of electroencephalogram signals, a possible methodology. Proc. of the IFAC Svmp. on Identification and System Parameter Estimation, Beijing, China. August 27–31 1988, 3: 1369–1376.Google Scholar
  45. Tsoi, A. C. and Sergejew. A. A., 1992, An application of artificial neural netw ork technique in EEG signal analysis: Evidence of global disconnection in schizophrenia. Pan Pacific Workshop on Brain Electric and Magnetic Topography, Melbourne, Australia, February 17–18 1992; Brain Topography, 5: 65.Google Scholar
  46. Tuckwell, H. C., 1989, Stochastic Processes in the Neurosciences. Philadelphia: SIAM.CrossRefGoogle Scholar
  47. Wright, J. J., 1990, Reticular activation and the dynamics of neuronal networks, Biological Cybernetics 62: 289–298.MATHCrossRefGoogle Scholar
  48. Wright, J. J. and Kydd, R. R., 1986, Schizophrenia as a disorder of cerebral state transitions, Australian and New Zealand J. of Psych. 20: 167–178.CrossRefGoogle Scholar
  49. Wright, J. J., Kydd, R. R. and Lees, G. J., 1985, State-changes in the brain viewed as linear steady-states and non-linear transitions between steady-states, Biological Cybernetics 53: 11–17.MATHCrossRefGoogle Scholar
  50. Wright, J. J., Kydd, R. R. and Sergejew, A. A., 1990, Autoregression models of LEG: results compared with expectations for a multilinear near-equilibrium biophysical process, Biological Cybernetics 62: 201–210.MATHCrossRefGoogle Scholar
  51. Wright, J. J. and Sergejew. A. A., 1991. Radial coherence. wave velocity and damping of electrocortical waves. EEG and Clin. Neurophys. 79: 403–412.CrossRefGoogle Scholar
  52. Wright, J. J.. Sergejew, A. A. and Liley, D. T. L., 1994. Computer simulation of electrocortical activity at millimetric scale, EEG and Clin. Neurophys. 90: 365–375.CrossRefGoogle Scholar
  53. Wright, J. J., Sergejew, A. A. and Stampfer, H. J., 1990, Inverse filter computation of the neural impulse giving rise to the auditory evoked potential. Brain Topography 2: 293–302.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Alex A. Sergejew
    • 1
  • Ah Chung Tsoi
    • 2
  1. 1.Centre for Applied Neurosciences School of Biophysical Sciences and Electrical EngineeringSwinburne University of TechnologyHawthornAustralia
  2. 2.Department of Electrical and Computer EngineeringUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations