The EMG as a Window to the Brain: Signal Processing Tools to Enhance the View

  • Werner M. Wolf


The paper discusses processing tools for electromyographic signals (EMG) with particular consideration of needle EMG and its decomposition in spike trains for single motor units (MU). Examples are given for combined application of surface and needle EMG, and possibilities for further developments of EMG signal processing tools are critically commented.


Motor Unit Spike Train Motor Potential Motor Unit Action Potential Single Motor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E.D., and Bronk, D.W., 1929, The discharge of impulses in motor nerve fibers: I1. The frequency of discharge in reflex and voluntary contraction, J Physiol. (Loud) 67: 1 19–15I.Google Scholar
  2. Andreassen, S., 1977, Interval pattern of single motor units, Thesis. Technical University of Denmark, Lyngby.Google Scholar
  3. Andreassen, S., 1983, Computerized analysis of motor unit firing, In: Desmcdt, J.E., ed., Computer-Aided Electromyography, Karger, Basel, Progr. Clin. Neurophysiol. 10: 150–163.Google Scholar
  4. Appel, U., and vonBrandt A., 1983, Adaptive Sequential Segmentation of Piecewise Stationary Time Series, Information Sciences 29: 27–56.MATHCrossRefGoogle Scholar
  5. Baratta, R.V., Solomonow, M., Best, R., and D’Ambrosia. R., 1993, Isotonic length/force models of nine different skeletal muscles, Med. & Biol. Eng. & Comput. 31: 449–458.CrossRefGoogle Scholar
  6. Bergmans, J., 1971, Computer assisted on line measurement of motor unit potential parameters inhuman electromyography, Electromyography 2: 161–181.Google Scholar
  7. Buchthal, F., Guld, C., and Rosenfalck, P., 1954a, Action potential parameters in normal human muscle and their dependence on physical variables, Acta Physiol. Scand. 32: 200–218.CrossRefGoogle Scholar
  8. Buchthal, F., Pinelli, P., and Rosenfalck, P., 1954b, Action potential parameters in normal human muscle and their physiological determinants, Acta Physiol. Scand. 32: 219–229.CrossRefGoogle Scholar
  9. Gerber, A., Studer, R., deFigueiredo, R.J.P. and Moschytz, F., 1984, A new framework and computer program for quantitative EMG signal analysis, IEEE Trans. Biomed. Eng. BME31: 857–863.Google Scholar
  10. Guiheneuc, P., Calamel, J., Doncarli, D., Gitton, D., Michel, C., (1983) Automatic detection and pattern recognition of single motor unit potentials in needle EMG. In: Desmedt, J.E., ed.. Computer-Aided Electromyography, Karger: Basel, pp. 73–127.Google Scholar
  11. Guiheneuc, P., 1985, Computer pattern recognition of motor unit potentials. In: Struppler, A., and Weindl, A., eds., Electromyography and Evoked Potentials, Springer: Berlin, pp. 114–121.CrossRefGoogle Scholar
  12. Inbar, G.F., and Noujaim, A., 1984, On surface EMG spectral characterization and its application to diagnostic classification. IEEE Trans. Biomed. Eng. BME 31: 597–604.CrossRefGoogle Scholar
  13. Kiryu, T., De Luca, C.J., and Saitoh, A., 1994, AR modeling of myoelectric interference signals during a ramp contraction, IEEE Trans. Biomed. Eng. BME41: 1031–1038.Google Scholar
  14. Kopec, J., and Hausmanowa-Petrusewicz, I., 1969, Histogram of muscle potentials recorded automatically with the aid of the averaging computer “ANOPS”, Electromyography 4: 371–381.Google Scholar
  15. LeFever, R.S., and DeLuca, C., 1982, A procedure for decomposing the myoelectric signal into constituent action potentials–Part I: Technique, theory and implementation. IEEE Trans. Biomed. Eng. BME29: 149–157.Google Scholar
  16. Lee, R.G., and White, D., 1973, Computer analysis of motor unit action potentials in routine clinical electromyography. In: Desmedt, J.E., ed., New Developments in Electromyography and Clinical Neurophysiology, Karger: Basel, pp. 454–461.Google Scholar
  17. McGill, K.C., and Dorfman, L.F., 1985, Automatic EMG decomposition inbrachial biceps, Electroenceph. Clin. Neurophv.siol. 6I: 453–461.CrossRefGoogle Scholar
  18. Merletti, R.. Knaflitz, M., De Luca, C.J., 1990, Myoelectric manifestations of fatigue in voluntary and electrical ly elicited contractions,./. Applied Physiol 69: 1810–1820.Google Scholar
  19. Merletti, R., Lo Conte, L.R., and Orizio, C., 1991, Indices of muscle fatigue, J Electromyography and Kinesiologv 1:20–23.Google Scholar
  20. Milner-Brown, H.S., Stein, R.B., and Lee, R.G., 1975, Synchronization of human motor units: Possible roles of exercise and supraspinal reflexes, Electroneceph. Clin. Neurophysiol. 38: 245–254.CrossRefGoogle Scholar
  21. Moritani, T.. and Shibata, M., 1994, Premovement electromyographic silent period and alpha-motoneuron excitability, J Electromyography and Kinesiology 4: 27–36.CrossRefGoogle Scholar
  22. Nandcdkar, S.D.. and Sanders, D., 1984, Special-purpose orthonormal basis functions–application to motor unit action potentials, IEEE Trans. Biomed. Eng. BME31: 374–377.Google Scholar
  23. Paiss O.. and Inbar. G.F.. 1987, Autoregressive modeling of surface EMG and its spectrum with application to fatigue. IEEE Trans. Biomed. Eng. BME34: 76 1–770.Google Scholar
  24. Pattichis. M.. and Pattichis, C.S., 1993, Fast wavelet transform in motor unit action potential analysis. Proc. 15th Annual Int. Conf, IEEE Eng. in Med. and Biology, pp. 1225–1226.Google Scholar
  25. Pattichis, C.S., 1992, Artificial neural networks in clincal electromyography, Ph.D. Thesis, Queen Mary and Westfield College, University of London, U.K.Google Scholar
  26. Prochazka, V.J., Conrad, B., and Sindermannn, F., 1972, A neuroelectric signal recognition system. Electroenceph. Clin. Neurophysiol. 32: 95–97.CrossRefGoogle Scholar
  27. Prochazka, V.J., Conrad, B., and Sindermann, F., 1973, Computerized single-unit interval analysis and its clinical application, In: Desmedt, J.E., ed., New Developments in Electromyography and Clinical Neurophysiology, Karger: Basel, Vol. 2, pp. 462–468.Google Scholar
  28. Schizas, C.N., Pattichis, C.S., Shofield, I.S., Fewcett, P.R., and Middleton, L.T., 1990, Artificial neural nets in computer-aided macro MUAP classification, IEEE EMBS 9: 31–38.Google Scholar
  29. Stalberg E., and Antoni L., 1983, Computer-aided EMG analysis. In: Desmedt, J.E., ed., Computer-Aided Electromyography, Karger: Basel, pp. 186–234.Google Scholar
  30. Stalberg, E., and Stalberg, S., 1989, The use of small computers in the EMG lab. In: Desmedt, J.E., ed., Computer-Aided Electromyography and Expert System, Elsevier Science Publ.: Amsterdam, pp. I - 32.Google Scholar
  31. Stashuk D., and deBruin. H., 1988, Automatic decomposition of selective needle-detected myoelectric signals, IEEE Trans. Biomed. Eng. BME35: 1 - I0.Google Scholar
  32. Studer, R.M., 1984, Computergestützte Analyse der Signale motorischer Einheiten im Elektromyogramm, Dissertation, ETH Zürich.Google Scholar
  33. Studer, R.M., deFigueiredo. R.J.P., and Moschytz, G.S., 1984, An algorithm for sequential signal estimation and system identification for EMG signals, IEEE Trans. Biomed. Eng. BME31: 285–295.Google Scholar
  34. Usui. S., and Amidor. I.J., 1982, Digital low-pass differentiation for biological signal processing, IEEE Trans. Biomed. Eng. 29: 686–693.Google Scholar
  35. Wierzbicka, M.M., Wolf, W., Staude, G., Konstanzer, A., and Dengler, R., 1993, Inhibition of EMG activity in isometrically loaded agonist muscle preceding a rapid contraction, Electromyogr. Clin. Neurophysiol. 33: 271–278.Google Scholar
  36. Wolf. W.. and Dengler. R., 1982, Detection and classification of single motor unit potentials in EMG recordings - a preliminary report. In: Proc. 6th ICPR, IEEE IEEE Computer Soc. Press: Los Angeles, Vol. 82, pp. 1195.Google Scholar
  37. Wolf, W., and Dengler, R., 1985, Computerized analysis of single motor unit potentials for the diagnosis of central motor disorders, Biomedizinische Technik, Erg.-Bd. 30: 8–9.Google Scholar
  38. Wolf, W., and Dengler, R., 1987, Automatic Sorting and Analysis of Multiunit EMG Recordings. In: Struppler, A., and Weindl, A., eds., Clinical Aspects of Sensory Motor Integration, Springer: Berlin, pp. 80–85.CrossRefGoogle Scholar
  39. Wolf, W., Dengler, R., and Appel, U., 1985, Segmentation and classification in computerized EMG analysis. In: Hamza, M.H., ed., Applied Signal Processing, Acta Press: Anaheim, pp. 246–250.Google Scholar
  40. Wolf, W., Dengler, R., and Appel, U., 1987, Computerized analysis of single motor unit activity, In: Proc. 9th Ann. Conf. IEEE-BME, IEEE Press: Piscataway, pp. 345–347.Google Scholar
  41. Wolf, W., 1991, Digital signal conditioning, In: Weitkunat, R., ed., Digital Biosignal Processing, Elsevier Science Publ.: Amsterdam, pp. 81–126.Google Scholar
  42. Yabe, K., 1976, Premotion silent in rapid voluntary movement, J. Applied Phpsiol. 41: 470–473.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Werner M. Wolf
    • 1
  1. 1.Institut für Mathematik und DatenverarbeitungUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations