Nutrition and Osteoporosis pp 35-51 | Cite as
Low Bone Mass in Past and Present Aboriginal Populations
Abstract
A slight and gradual loss of bone mass is characteristic of all aging primates, if they live long enough (Garn, 1970; Burr, 1980). Nevertheless, the observation of reduced bone mass among ancestral human skeletal remains is limited to relatively recent populations. Since the domestication of plants roughly 12,000 years ago, skeletal remains from disparate parts of the world have occasionally shown low bone mass. Perhaps earlier populations did not suffer age-related bone loss because they died at young ages (Pfeiffer, 1990), or perhaps their diet or lifestyle facilitated effective bone maintenance. Past human populations were more dependent on local natural resources and their own physical labor for subsistence, a cultural pattern maintained by only a few geographically isolated aboriginal groups today. These “anthropological populations” have been portrayed as natural paradigms whose dietary habits might be studied as representations of our species’ natural “set point” for nutritional requirements, and against which we might evaluate modern regimens and their biological consequences (Eaton et al., 1988; Eaton and Nelson, 1991).
Keywords
Bone Mass Cortical Bone Loss Skeletal Sample Local Natural Resource Prehistoric PopulationPreview
Unable to display preview. Download preview PDF.
References
- Armelagos, G. J., Mielke, J. H., Owen, K. H., Van Gerven, D. P., Dewey, J. R., and Mahler, P. E., 1972, Bone growth and development in prehistoric populations from Sudanese Nubia, J. Hum. Evol. 1: 89.CrossRefGoogle Scholar
- Avioli, L. V., 1988, “Calcium and phosphorus,” in: Modern Nutrition in Health and Disease. ( M. E. Shils and V. R. Young, eds.), pp. 142–158, Lea and Febiger, Philadelphia.Google Scholar
- Barnett, E., and Nordin, B. E. C., 1960, The radiological diagnosis of osteoporosis: a new approach, Clin. Radiol. 11: 166.Google Scholar
- Bennike, P., and Bohr, H., 1990, “Bone mineral content in the past and present,” in: Osteoporosis 1990: Proceedings of the 3rd International Symposium on Osteoporosis, Copenhagen, Denmark. ( C. Christiansen and K. Overgaard, eds.), pp. 89–91, Osteopress Aps, Copenhagen.Google Scholar
- Bridges, P. S., 1989, Bone cortical area in the evaluation of nutrition and activity levels, Am. J. Hum. Biol. 1: 785.CrossRefGoogle Scholar
- Burr, D. B., 1980, The relationships among physical, geometrical and mechanical properties of bone, with a note on the properties of nonhuman primate bone, Yearbk. Phys. Anthropol. 23: 109.CrossRefGoogle Scholar
- Carlson, D. S., Armelagos, J. G., and Van Gerven, D. P., 1976, Patterns of age-related cortical bone loss (osteoporosis) within the femoral diaphysis, Hum. Biol. 48: 295.Google Scholar
- Cassidy, C. M., 1984, “Skeletal evidence for prehistoric subsistence adaptation in the central Ohio River valley,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 307–345, Academic Press, New York.Google Scholar
- Charles, P., 1992, Calcium absorption and calcium bioavailability, J Int. Med. 231:161. Cohen, M. N., 1989, Health and the Rise of Civilization, Yale University Press, New Haven.Google Scholar
- Cook, D. C., 1979, Subsistence base and health in prehistoric Illinois valley: evidence from the human skeleton, Med. Anthropol. 4: 109.CrossRefGoogle Scholar
- Dewey, J. R., Armelagos, G. J. and Bartley, M. H., 1969a, Femoral cortical involution in three Nubian archaeological populations, Hum. Biol. 41: 13.Google Scholar
- Dewey, J. R., Bartley, M. H., and Armelagos, G. J., 1969b, Rates of femoral cortical bone loss in two Nubian populations, Clin. Orthopaed 65: 61.Google Scholar
- Draper, H. H., 1986, The nutritional health of Eskimos, Coll. Anthropol. 10: 221.Google Scholar
- Eaton, S. B. and Nelson, D. A., 1991, Calcium in evolutionary perspective, Am. J. Clin. Nutr. 54:28IS.Google Scholar
- Eaton, S. B., Konner, M. J., and Shostak, M., 1988, Stone-agers in the fast lane: chronic degenerative diseases in evolutionary perspective, Am. J Med. 84: 739.CrossRefGoogle Scholar
- Ericksen, M. F., 1976, Cortical bone loss with age in three native American populations, Am. J. Phys. Anthropol. 45: 443.CrossRefGoogle Scholar
- Ericksen, M. F., 1980, “Patterns of microscopic bone remodeling in three aboriginal American populations,” in: Early Native Americans: Prehistoric Demography, Economy and Technology ( D. L. Browman, ed.), pp. 239–270, Mouton, The Hague.Google Scholar
- Frost, H. M., 1966, “Morphometry of bone in paleopathology,” in: Human Paleopathology ( S. Jarcho, ed.), pp. 131–150, Yale University Press, New Haven.Google Scholar
- Garn, S. M., 1970, The Earlier Gain and Later Loss of Cortical Bone in Nutritional Perspective, Charles C. Thomas, Springfield.Google Scholar
- Garn, S. M., Rohmann, C. G., Behar, M., Viteri, F., and Guzman, M. A., 1964, Compact bone deficiency in protein-calorie malnutrition, Science 145: 1444.CrossRefGoogle Scholar
- Garn, S. M., Poznanski, A. K., and Larson, K., 1976, “Metacarpal lengths, cortical diameters and areas from the 10-state nutritional survey,” in: Proceedings of the First Workshop on Bone Morphometry ( Z. F. G. Jaworski, ed.), pp. 367–391, University of Ottawa Press, Ottawa.Google Scholar
- Hancock, R. G. V., Grynpas, M. D., and Pritzker, K. P. H., 1989, The abuse of bone analyses for archaeological dietary studies, Archaeometry 31: 169.CrossRefGoogle Scholar
- Hanson, D. B., and Buikstra, J. E., 1987, Histomorphological alteration in buried human boneGoogle Scholar
- from the lower Illinois Valley: implications for paleodietary research, J. Arch. Sci. 14:549.Google Scholar
- Harper, A. B., Laughlin, W. S. and Mazess, R. B., 1984, Bone mineral content in St. Lawrence Island Eskimos, Hum. Biol. 56: 63.Google Scholar
- Hegsted, D. M., 1986, Calcium and osteoporosis, J. Nutr. 116: 2316.Google Scholar
- Hildes, J. A. and Schaefer, O., 1972, Health of Igloolik Eskimos and changes with urbanization, J. Hum. Evol. 2: 241.CrossRefGoogle Scholar
- Himes, J. H., 1978, Bone growth and development in protein-calorie malnutrition, World Rev. Nutr. Diet. 28: 143.Google Scholar
- Hummert, J. R., 1983, Cortical bone growth and dietary stress among subadults from Nubia’s Batn el Hajar, Am. J Phys. Anthropol. 62: 167.CrossRefGoogle Scholar
- Huss-Ashmore, R., Goodman, A. H., and Armelagos, G. J., 1982, “Nutritional inference from paleopathology,” in: Advances in Archaeological Method and Theory ( M. B. Schiffer, ed.), pp. 395–474, Academic Press, New York.Google Scholar
- Keith, M. S., 1981, “Cortical bone loss in juveniles of Dickson Mounds,” in: Biocultural Adaptation: Comprehensive Approaches to Skeletal Analysis (D. L. Martin and M. P. Bumstead, eds.), pp. 64–79, Research Reports No. 20, Dept. of Anthropology, University of Massachusetts, Amherst.Google Scholar
- Laughlin, W. Q., Harper, A. B., and Thompson, D. D., 1979, New approaches to the pre-and post-contact history of Arctic peoples, Am. J. Phys. Anthropol. 51: 579.CrossRefGoogle Scholar
- Leonard, W. R., and Robertson, M. L., 1992, Nutritional requirements and human evolution: a bioenergetics model, Am. J Hum. Biol. 4: 179.CrossRefGoogle Scholar
- Martin, D. L., 1983, Paleophysiological aspects of bone remodeling in the Meroitic, X-group and Christian populations from Sudanese Nubia, Am. J. Phys. Anthropol. 60: 83.CrossRefGoogle Scholar
- Martin, D. L., and Armelagos, G. J., 1979, Morphometrics of compact bone: an example from Sudanese Nubia, Am. J Phys. Anthropol. 51: 571.CrossRefGoogle Scholar
- Martin, D. L., Armelagos, G. J., and Van Gerven, D. P., 1984, “The effects of socioeconomic change in prehistoric Africa: Sudanese Nubia as a case study,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 193–214, Academic Press, New York.Google Scholar
- Martin, D. L., Goodman, A. H., and Armelagos, G. J., 1985, “Skeletal pathologies as indicators of quality and quantity of diet,” in: The Analysis of Prehistoric Diets ( R. I. Gilbert, Jr. and J. H. Mielke, eds.), pp. 227–279, Academic Press, New York.Google Scholar
- Mazess, R. B., 1966, Bone density in Sadlermiut Eskimo, Hum. Biol. 38: 42.Google Scholar
- Mazess, R. B., and Cameron, J. R., 1974, “Bone mineral content in normal U.S. whites,” in: Proceedings of the International Conference on Bone Mineral Measurement. ( R. B. Mazess, ed.). pp. 228–237, U.S. Government Printing Office, Washington, D.C.Google Scholar
- Mazess, R. B., and Jones, R., 1972, Weight and density of Sadlermiut Eskimo long bones, Hum. Biol. 44: 537.Google Scholar
- Mazess, R. B., and Mather, W., 1974, Bone mineral content of North Alaskan Eskimos, Am. J. Clin. Nutr. 27: 916.Google Scholar
- Mazess, R. B., and Mather, W., 1975, Bone mineral content in Canadian Eskimos, Hum. Biol. 47: 45.Google Scholar
- McHenry, H. M., 1992, Body size and proportions in early hominids, Am. J Phys. Anthropol. 87: 407.CrossRefGoogle Scholar
- Melton, III, L. J., and Wahner, H. W., 1989, Defining osteoporosis, Calcif. Tiss. Int. 45: 263.CrossRefGoogle Scholar
- Merbs, C., 1983, Patterns of Activity-Induced Pathology in a Canadian Inuit Population,National Museums of Canada, Mercury Series Publ. No. 119, Ottawa.Google Scholar
- Mielke, J. H., Armelagos, G. J., and Van Gerven, D. P., 1972, Trabecular involution in femoral heads of a prehistoric (X-group) population from Sudanese Nubia, Am. J. Phys. Anthropol. 36: 39.CrossRefGoogle Scholar
- Mosekilde, Lis, 1990, Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscope study (uncoupling of unloaded structures), Bone and Mineral 10: 13.CrossRefGoogle Scholar
- Nelson, D. A., 1984, Bone density in three archaeological populations, Am. J. Phys. Anthropol. 63: 198 (abstr.).Google Scholar
- Oswalt, W. H., 1967, Alaskan Eskimos, Chandler Publishing Co., San Francisco.Google Scholar
- Pawson, I. G., 1974, Radiographic determination of excessive bone loss in Alaskan Eskimos, Hum. Biol. 46: 369.Google Scholar
- Peacock, M., 1991, Calcium absorption efficiency and calcium requirements in children and adolescents, Am. J. Clin. Nutr. 54: 261S.Google Scholar
- Perzigian, A. J., 1973a, Osteoporotic bone loss in two prehistoric Indian populations, Am. J. Phys. Anthropol. 39: 87.CrossRefGoogle Scholar
- Perzigian, A. J., 1973b, The antiquity of age-associated bone demineralization in man, J. Am. Geriat. Soc. 21: 100.Google Scholar
- Pfeiffer, S., 1990, The evolution of human longevity: distinctive mechanisms? Can. J. Aging 9: 95.CrossRefGoogle Scholar
- Pfeiffer, S., and Fairgrieve, S. I., 1994, “Evidence from ossuaries: the effect of contact on the health of Iroquoians,” in: In the Wake of Contact: Biological Responses to Conquest ( C. S. Larsen and G. Milner, eds.), pp. 47–61, Wiley-Liss, New York.Google Scholar
- Pfeiffer, S., and King, P., 1983, Cortical bone formation and diet among protohistoric Iroquoians, Am. J Phys. Anthropol. 60: 23.CrossRefGoogle Scholar
- Reinhard, K. J., 1992, Parasitology as an interpretive tool in archaeology, Am. Antiq. 57: 231.CrossRefGoogle Scholar
- Richman, E. A., Ortner, D. J., and Schulter-Ellis, F. P., 1979, Differences in intracortical bone remodeling in three aboriginal American populations, Calcif. Tissue Int. 28: 209.CrossRefGoogle Scholar
- Roberts, C., and Wakely, J., 1992, Microscopical findings associated with the diagnosis of osteoporosis in paleopathology, Int. J Osteoarch. 2: 23.CrossRefGoogle Scholar
- Roosevelt, A. N., 1984, “Population, health, and the evolution of subsistence: conclusions from the conference,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 559–583, Academic Press, New York.Google Scholar
- Ruff, C. B., 1988, Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling, J. Hum. Evol. 17: 687.CrossRefGoogle Scholar
- Ruff, C. B., 1992, “Biomechanical analyses of archaeological human skeletal samples,” in: Skeletal Biology of Past Peoples: Research Methods ( S. R. Saunders and M. A. Katzenberg, eds.), pp. 37–52, Wiley-Liss, New York.Google Scholar
- Ruff, C. B., and Hayes, W. C., 1984, Bone-mineral content of the lower limb, J Bone Jt. Surg. 66A: 1024Google Scholar
- Ruff, C. B. and Larsen, C. S., 1990, “Postcranial biomechanical adaptations to subsistence strategy changes on the Georgia coast,” in: The Archaeology of Mission Santa Catalina de Guale: 2. Biocultural Interpretations of a Population in Transition (C. S. Larsen, ed.), pp. 94–120, Anthropological Papers of the American Museum of Natural History, No. 68, New York.Google Scholar
- Ruff, C. B., Larsen C. S., and Hayes, W. C., 1984, Structural changes in the femur with the transition to agriculture on the Georgia coast, Am. J. Phys. Anthropol. 64: 125.CrossRefGoogle Scholar
- Sambrook, P. N., Browne, C. D., Eisman, J. A., and Bourke, S. J., 1986, A case of crush-fracture osteoporosis from late Roman Pella in Jordan. OSSA 13: 167.Google Scholar
- Saunders, S. R., and Melbye, F. J., 1990, Subadult mortality and skeletal indicators of health in Late Woodland Ontario Iroquois, Can. J. Arch. 14: 61.Google Scholar
- Schaefer, O., Timmermans, J. F. W., Eaton, R. D. P., and Matthews, A. R., 1980, General and nutritional health in two Eskimo populations at different stages of acculturation, Can. J. Publ. Health 71: 397.Google Scholar
- Smith, P., Bloom, R. A., and Berkowitz, J., 1983, Diachronic trends in humeral cortical thickness of Near Eastern populations, J. Hum. Evol. 13: 603.CrossRefGoogle Scholar
- Southern, R. A., 1990, Cortical Bone Quality Among Pre-Iroquoian and Iroquoian Populations of the Lower Great Lakes Region, Masters thesis, Department of Anthropology, McMaster University, Hamilton, Ontario.Google Scholar
- Stout, S. D., 1978, Histological structure and its preservation in ancient bone, Curr. Anthropol. 19: 601.CrossRefGoogle Scholar
- Stout, S. D., and Teitlebaum, S. L., 1976, Histomorphometric determination of formation rates of archaeological bone, Calcif. Tissue Res. 21: 163.CrossRefGoogle Scholar
- Thompson, D. D., and Cowen, K. S., 1984, Age at death and bone biology of the Barrow mummies, Arctic Anthropol. 21: 83.Google Scholar
- Thompson, D. D., and Guiness-Hey, M., 1981, Bone mineral-osteon analysis of Yupik-Inupiak skeletons, Am. J. Phys. Anthropol. 55: 1.CrossRefGoogle Scholar
- Thompson, D. D., Slater, E. M., and Laughlin, W. S., 1981, Bone core analysis of Baffin Island skeletons, Arctic Anthropol. 18: 87.Google Scholar
- Thompson, D. D., Posner, A. S., Laughlin, W. S., and Blumenthal, N. C., 1983, Comparison of bone apatite in osteoporotic and normal Eskimos, Calcif. Tissue. Int. 35: 392.CrossRefGoogle Scholar
- Van Gerven, D. P., 1973, Thickness and area measurements as parameters of skeletal involution of the humerus, femur and tibia, J. Gerontology 28: 40.CrossRefGoogle Scholar
- Van Gerven, D. P., and Armelagos, J. G., 1970, Cortical involution in prehistoric Mississippian femora, J. Gerontology 25: 20.CrossRefGoogle Scholar
- Van Gerven, D. P., Hummert, J. R., and Burr, D. B., 1985, Cortical bone maintenance and geometry of the tibia in prehistoric children from Nubia’s Batn el Hajar, Am. J. Phys. Anthropol. 66: 275.CrossRefGoogle Scholar
- Van Gerven, D. P., Hummert, J. R., Prendergast Moore, K., and Sandford, M. K., 1990, “Nutrition, disease, and the human life cycle: a bioethnography of a medieval Nubian community,” in: Primate Life History and Evolution ( J. DeRousseau, ed.), pp. 297–323, Wiley-Liss, New York.Google Scholar
- Weinstein, R. S., Simmons, D. J., and Lovejoy, C. 0., 1981, Ancient bone disease in a Peruvian mummy revealed by quantitative skeletal histomorphometry. Am. J. Phys. Anthropol. 54: 321.CrossRefGoogle Scholar
- Wood, J.W., Milner, G.R., Harpending, H.C., and Weiss, K.M. 1992, The osteological paradox: problems of inferring prehistoric health from skeletal samples, Current Anthropol. 33: 343.CrossRefGoogle Scholar
- Yuen, D. E., Draper, H. H., and Trilok, G., 1984, Effect of dietary protein on calcium metabolism in man, Nutr. Abstr. and Rev. Clin. Nutr. 54: 447.Google Scholar