Skip to main content

The Gain and Loss of Bone in the Human Life Cycle

  • Chapter
Nutrition and Osteoporosis

Part of the book series: Advances in Nutritional Research ((ANUR,volume 9))

  • 220 Accesses

Abstract

Osteoporosis may be defined as a diminished quantity and quality of bone that increases the risk for fracture. The fractures given most attention involve the vertebrae, femur and radius, although other fractures are also related to osteoporosis. Fractures of the distal forearm (Colles’) and vertebrae, which contain large amounts of trabecular bone, increase after menopause. The increase in fracture incidence reaches a plateau at 65 years for the wrist, but the incidence continues to rise with increasing age for the vertebrae. The incidence of fractures with a more proportionate mix of compact and trabecular bone increases slowly, and then exponentially in the elderly, resulting in increased fractures in the femur, proximal humerus, proximal tibia and pelvis (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M., 1969, Normal variation in the density of selected human bones in North India, J. Bone Joint Surg. 51B: 719.

    CAS  Google Scholar 

  • Aloia, J.F., Ross, P., Vaswani, A., Zanzi, I., and Cohn, S., 1982, Rate of bone loss in postmenopausal and osteoporotic women, Am. J. Physiol. 242: E82.

    CAS  Google Scholar 

  • Aloia, J.F., Vaswani, A., Yeh, J.K., Ross, P., Ellis, K., and Cohn, S.H., 1983, Determinants of bone mass in postmenopausal women, Arch. Intern. Med. 143: 1700.

    Article  CAS  Google Scholar 

  • Aloia, J.F., Vaswani, A., Ellis, K., Yuen, K., and Cohn, S.H., 1985a, A model for involutional bone loss, J. Lab. Clin. Med. 106: 630.

    CAS  Google Scholar 

  • Aloia, J.F., Cohn, S.H., Vaswani, A., Yeh, J.K., and Ellis, K., 1985b, Risk factors for postmenopausal osteoporosis, Am. J. Med. 78: 95.

    Article  CAS  Google Scholar 

  • Aloia, J.F., McGowan, D., Vaswani, A., Ross, P., and Cohn, S.H., 1991, The relationship of menopause to skeletal and muscle mass, Am. J. Clin. Nutr. 53: 1378.

    CAS  Google Scholar 

  • Arnold, J.S., 1973, Amount and quality of trabecular bone in osteoporotic vertebral fractures, Clin. Endocrinol. Metab. 2: 221.

    Article  CAS  Google Scholar 

  • Avioli, L. V., 1987, The Osteoporotic Syndrome: Detection, Prevention and Treatment, 2d ed., W. B. Saunders, Philadelphia.

    Google Scholar 

  • Banzer, D.H., Schneider, U., Risch, W.D., and Botsch, H., 1976, Roentgen signs of vertebral demineralization and mineral content of peripheral cancellous bone. Am. J. Roentgen. 126: 1306.

    Article  CAS  Google Scholar 

  • Basle, M.F., Mauras, Y., and Audran, M., 1990, Concentration of bone elements in osteoporosis, J. Bone Min. Res. 5: 41.

    Article  CAS  Google Scholar 

  • Beck, T.J., Ruff, C.B., Scott, W.W., Jr., Plato, C., Tobin, J.D., and Quan, C.A., 1992, Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data, Calcif. Tissue Int. 50: 24.

    Article  CAS  Google Scholar 

  • Bell, N.H., Shary, J., Stevens, J., Garza, M., Gordon, L., and Edwards, J., 1991, Demonstration that bone mass is greater in black than in white children, J. Bone Min. Res. 6: 719.

    Article  CAS  Google Scholar 

  • Birkenhager-Frenkel, D.H., Courpron, F., Hupscher, E.A., Clermonts, E., Coutino, M.F., Schmitz, P.I.M., and Meunier, P.J., 1988, Age-related changes in cancellous bone structure: A two-dimensional study in the transiliac and iliac crest biopsy sites, Bone and Mineral 4: 197.

    CAS  Google Scholar 

  • Block, J.E., Smith, R., Steiger, P., Glueer, C.C., Ettinger, B., and Genant, H.K., 1989, Models of spinal trabecular bone loss as determined by quantitative computed tomography, J. Bone Min. Res. 4: 249.

    Article  CAS  Google Scholar 

  • Bonjour, J.P., Theintz, G., and Buchs, B., 1991, Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence, J. Clin. Endocrinol. Metab. 73: 555.

    Article  CAS  Google Scholar 

  • Buchanan, J.R., Myers, C., Lloyd, T., and Greer, R.B., 1988, Early vertebral trabecular bone loss in normal premenopausal women, J. Bone. Min. Res. 3: 583.

    Article  CAS  Google Scholar 

  • Burkhardt, R., Kettner, G., Bohm, W., Schmidmeier, M., Schlag, R., Frisch, B., Mallmann, B., Eisenmenger, W., and Gilg, T.H., 1987, Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study, Bone 8: 157.

    Article  CAS  Google Scholar 

  • Chalmers, J. and Weaver, J.K., 1966, Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content, J. Bone Joint Surg. 48A: 299.

    CAS  Google Scholar 

  • Chappard, D., Alexandre, CH., Robert, J.M., and Riffat, G., 1991, Relationships between bone and skin atrophies during aging, Acta Anat. 41: 239.

    Article  Google Scholar 

  • Cohn, S.H., Vaswani, A.N., Aloia, J.F., Roginsky, M.S., Zanzi, I., and Ellis, K.J., 1976a, Changes in body chemical composition with age measured by total body neutron activation, Metabolism 25: 85.

    Article  CAS  Google Scholar 

  • Cohn, S.H., Vaswani, A.N., Zanzi, I., and Ellis, K., 19766, The effect of aging on bone mass in adult women, Am. J Physiol. 230: 143.

    Google Scholar 

  • Cohn, S.H., Abesamis C., Zanzi, I., Aloia, J.F., Yasumura, S., and Ellis, K.J., 1977a, Body elemental composition: comparison between black and white adults, Am. J. Physiol. 232: E419.

    CAS  Google Scholar 

  • Cohn, S.H., Abesamis C., Yasumura, S., Aloia, J.., Zanzi, I., and Ellis, K.J., 1977b, Comparative skeletal mass and radial bone mineral content in black and white women, Metabolism 26: 171.

    Article  CAS  Google Scholar 

  • Cohn, S.H., Aloia, J.F., Vaswani, A.N., Zanzi, I., Varetsky, D., and Ellis, K., 1981, Age and sex related changes in bone mass measured by neutron activation. Abstract at the International Symposium on Osteoporosis, Jerusalem, Israel, 5/31–6/4/81 (unpubl.).

    Google Scholar 

  • Cohn, S.H., Aloia, J.F., Vaswani, A.N.,Yuen, K., Yasumura, S., and Ellis, K.J. 1984, “Model for determining women at risk for developing osteoporosis: by total body neutron activation, photon absorptiometry of spine and radius” (abstract), in: Proceedings of the Copenhagen International Symposium on Osteoporosis, June 3–8, 1984, Wiley, New York.

    Google Scholar 

  • Compston, J.E., Mellish, R.W., and Garrahan, N.J., 1987, Age-related changes in iliac crest trabecular microanatomic bone structure in man, Bone 8: 289.

    Article  CAS  Google Scholar 

  • Davis, J.W., Ross, P.D., Vogel, J.M., and Wasnich, R., 1991, Age-related changes in bone mass among Japanese-American men, Bone and Mineral 15: 227.

    Article  CAS  Google Scholar 

  • Dempster, D.V., Shane, E., Horbert, W., and Lindsay, R., 1986, A simple method for correlative light and scanning electron microscopy of human iliac crest bone biopsies: qualitative observations in normal and osteoporotic subjects, J Bone Min. Res. 1: 15.

    Article  CAS  Google Scholar 

  • DePriester, J.A., Cole, T.J., and Bishop, N.J., 1991, Bone growth and mineralization in children aged 4 to 10 years, Bone and Mineral 12: 57.

    Article  Google Scholar 

  • Dequeker, J., Remans, J., Franssen, R., and Waes, J., 1971, Ageing patterns of trabecular and cortical bone and their relationship, Calcif. Tissue Res. 7: 23.

    Article  CAS  Google Scholar 

  • DeSchepper, J., Derde, M.P., Van den Broeck, M., Piepsz, A., and Jonckheer, M.H., 1991, Normative data for lumbar spine bone mineral content in children: influence of age, height, weight, and pubertal stage, J. Nuclear Med. 32: 216.

    Google Scholar 

  • Dhuper, S., Warren, M.P., Brooks-Gunn, J., and Fox, R., 1990, Effects of hormonal status on bone density in adolescent girls, J Clin. Endocrinol. Metab. 71: 1083.

    Article  CAS  Google Scholar 

  • Elliott, J.R., Gilchrist, N.L., Wells, J.E., Turner, J.G., Ayling, E., Gillespie, W.J., Sainsbury, R., Hornblow, A., and Donald, R.A., 1990, Effects of age and sex on bone density at the hip and spine in a normal Caucasian New Zealand population, NZ Med. J. 103: 33.

    CAS  Google Scholar 

  • Evans, F.G., 1976, Mechanical properties and histology of cortical bone from younger and older men, Anat. Rec. 185: 1.

    Article  CAS  Google Scholar 

  • Eyre, D.R., Dickson, I.R., and Van Ness, K., 1988, Collagen cross-linking in human bone and articular cartilage, Biochem. J. 252: 495.

    CAS  Google Scholar 

  • Field, R.E., Dixon, A.K., Lawrence, J.P., and Rushton, N., 1990, Bone density distribution within the femoral head and neck, Skeletal Radiol. 19: 319.

    Article  CAS  Google Scholar 

  • Foldes, J., Parfitt, A.M., Shih, M.S., Rao, D.S., and Kleerekoper, M., 1991, Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Min. Res. 6: 759.

    Article  CAS  Google Scholar 

  • Gallagher, J.C., Goldgar, D, and Moy, A., 1987, Total bone calcium in normal women: Effect of age and menopause status, J Bone Min. Res. 2: 491.

    Article  CAS  Google Scholar 

  • Garn, S.M., 1972, The course of bone gain and the phases of bone loss, Orthop. Clin. N. Am. 3: 503.

    CAS  Google Scholar 

  • Garn, S.M., Clark, D.C., and Trowbridge, F.L., 1973, Tendency toward greater stature in American black children, Am. J Dis. Child. 126: 164.

    CAS  Google Scholar 

  • Gilsanz, V., Gibbens, D.T, and Roe, T.F., 1988, Vertebral bone density in children: effect of puberty, Radiology 166: 847.

    CAS  Google Scholar 

  • Gilsanz, V., Roe, T.F., Mora, S., Costin, G., and Goodman, W., 1991, Changes in vertebral bone density in black girls and white girls during childhood and puberty, New Engl. J. Med. 535: 1597.

    Article  Google Scholar 

  • Glastre, C., Braillon, P., David, L., Cochat, P., Meunier, P.J., and Delmas, P.D., 1990, Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: Correlations with growth parameters, J. Clin. Endocrinol. Metab. 70: 1330.

    Article  CAS  Google Scholar 

  • Haasner, E., Krokowski, E., and Bach, K., 1967, Normalwerte des Hydroxylapatitgehaltes im Skelet in Abhangigkeit von Lakalisation, Lebensalter and Geschlecht, Klin. Wochenschr. 45: 575.

    Article  CAS  Google Scholar 

  • Hagino, H., Yamamoto, K., Teshima, R., Kishimoto, H., and Kagawa, T.,1992, Radial bone mineral changes in pre-and postmenopausal healthy Japanese women: Cross-sectional and longitudinal studies, J. Bone Min. Res. 7: 147.

    Google Scholar 

  • Hall, M.L., Heavens, J., Cullum, I.D., and Ell, P.J., 1990, The range of bone density in normal British women, Br. J. Radio. 6: 366.

    Google Scholar 

  • Hansson, T., and Roos, B., 1980, The amount of bone mineral in the lumbar spine in women 35 to 80 years of age, Presented at Tenth European Symposium on Osteoarthrology, Malmo, Sweden.

    Google Scholar 

  • Havivi, E., Reshef, A., Schwartz, A., Guggenheim, K., Bernstein, D.S., Hegsted, D.M., and Stare, F.J., 1971, Comparisons of metacarpal bone loss with physical and chemical characteristics of vertebrae and ribs, Israel J. Med. Sci. 7: 1055.

    CAS  Google Scholar 

  • Heuck, F.H.W., 1970, “Quantitative measurements of mineral content in bone diseases,” in: Symposium Ossium ( A. M. Jelliffe and B. Strickland, eds.), E.S. Livingstone, Edinburgh.

    Google Scholar 

  • Hoiseth, A., Alho, A., and Husby, T., 1990, Femoral cortical/cancellous bone related to age, Acta Radio!. 31: 626.

    CAS  Google Scholar 

  • Hui, S.L., Wiske, P.S., Norton, J.A., and Johnston, C.C., 1982, A prospective study of change in bone mass with age in postmenopausal women, J. Chron. Dis. 35: 715.

    Article  CAS  Google Scholar 

  • Hui, S.L., Slemenda, C.W., Johnston, C.C., and Appledorn, C.R., 1987, Effects of age and menopause on vertebral bone density, Bone and Mineral 2: 141.

    CAS  Google Scholar 

  • Hurxthal, L.M., and Vose, G.P., 1969, The relationship of dietary calcium intake to radiographic bone density in normal and osteoporotic persons, Calcif. Tissue Res. 4: 245.

    Article  CAS  Google Scholar 

  • Johnston, C.C., Jr., Smith, D.M., and Khairi, M.R.A., 1975, “Prospective and cross-sectional study of radial bone loss in post-menopausal women,” in: Calcified Tissues, Proceedings of XIth European Symposium on Calcified Tissues ( S. Pors Nielsen, ed.), Springer-Verlag, New York.

    Google Scholar 

  • Johnston, C.C., Jr., Norton, J.A., Jr., Khairi, R.A., and Longcope, C., 1979, “Age-related bone loss,” in: Osteoporosis II. (U. Barzell, ed.), pp. 59–72, Grune & Stratton, New York.

    Google Scholar 

  • Kalender, W.A., Felsenberg, D., Louis, O., Lopez, P., Klotz, E., Osteau, M., and Fraga, J., 1989, Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography, Europ. J. Radio 9: 75.

    CAS  Google Scholar 

  • Katzman, D.K., Bachrach, L.K., Carter, D.R., and Marcus, R., 1991, Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls, J. Clin. Endocrinol. Metab. 73: 1332.

    Article  CAS  Google Scholar 

  • Kelly, P.J., Twomey, L., Sambrook, P.N., and Eisman, J.A., 1990, Sex differences in peak adult bone mineral density, J. Bone Min. Res. 5: 1169.

    Article  CAS  Google Scholar 

  • Kin, K., Kushida, K., Yamazaki, K., Okamoto, S., and Inoue, T., 1991, Bone mineral density of the spine in normal Japanese subjects using dual-energy x-ray absorptiometry: effect of obesity and menopausal status, Calcif. Tissue Int. 49: 101.

    Article  CAS  Google Scholar 

  • Kragstrup, J., Melsen, F., and Mosekilde, L., 1983, Thickness of lamellae in normal human iliac trabecular bone, Metab. Bone Dis. Rel. Res. 4: 291.

    Article  CAS  Google Scholar 

  • Krolner, B., and Nielsen, S., 1982, Bone mineral content of the lumbar spine in normal and osteoporotic women: cross-sectional and longitudinal studies, Clin. Sci. 62: 329.

    CAS  Google Scholar 

  • Krolner, B., and Pors Nielsen, S., 1980, Measurement of bone mineral content (BMC) of the lumbar spine. I: Theory and application of a new two-dimensional dual-photon attenuation method, Scand. J Clin. Lab. Invest. 40: 653.

    Article  CAS  Google Scholar 

  • Laitinen, K., Valimaki, M., and Keto, P., 1991, Bone mineral density measured by dual-energy x-ray absorptiometry in healthy Finnish women, Calcif. Tissue Int. 48: 224.

    Article  CAS  Google Scholar 

  • Liel, Y., Edwards, J, Shary, J., Spicer, D.M., Gordon, L., and Bell, N.H., 1988, The effect of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women, J. Clin. Endocrinol. Metab. 66: 1247.

    Article  CAS  Google Scholar 

  • Lindquist, O., Bengtsson, C., Hansson, T., and Jonsson, R., 1983, Changes in bone mineral content of the axial skeleton in relation to aging and the menopause, Scand. J. Clin. Lab. Invest. 43: 333.

    CAS  Google Scholar 

  • Lloyd, T., Rollings, N., Andon, M.B., Demers, L.M., Eggli, D.F., Kieselhorst, K., Kulin, H., Landis, J.R., Maratel, J.K., Orr, G., and Smith, P., 1992, Determinants of bone density in young women: I. Relations among pubertal development, total body bone mass, and total body bone density in premenarchal females, J. Clin. Endocrinol. Metab. 75: 383.

    Article  CAS  Google Scholar 

  • Marcus, R., Kosek, J., Pfefferbaum, A., and Horning, S., 1983, Age-related loss of trabecular bone in premenopausal women: a biopsy study, Calcif. Tissue Int. 35: 406.

    Article  CAS  Google Scholar 

  • Mazess, R.B., 1982, On aging bone loss, Clin. Orthop. Rel. Res. 165: 239.

    Google Scholar 

  • Mazess, R.B., and Barden, H.S., 1991, Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills, Am. J. Clin. Nutr. 53: 132.

    CAS  Google Scholar 

  • Mazess, R.B., Barden, H.S., Ettinger, M., Johnston, C., Dawson-Hughes, B., Baran, D., Powell, M., and Notelovitz, M., 1987, Spine and femur density using dual-photon absorptiometry in US white women, Bone and Mineral 2: 211.

    CAS  Google Scholar 

  • McCormick, D.P., Ponder, S.W., Fawcett, H.D., and Palmer, J.L., 1991, Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences, J. Bone Min. Res. 6: 507.

    Article  CAS  Google Scholar 

  • Meier, D., Luckey, M., Wallenstein, S., and Lapinski, R., 1992, Significant premenopausal bone loss in white and black women: a longitudinal study, J. Bone Min. Res. 7: S135 (abstract).

    Google Scholar 

  • Mosekilde, L., 1988, Age-related changes in vertebral trabecular bone architecture—assessed by a new method, Bone 9: 247.

    Article  CAS  Google Scholar 

  • Mosekilde, L., Mosekilde, L., and Danielsen, C.C., 1987, Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone 8: 79.

    Article  CAS  Google Scholar 

  • Mueller, K.H., Trias, A. and Ray, R.D., 1966, Bone density and composition: Age-related and pathological changes in water and mineral content, J. Bone Joint Surg. 48A: 140.

    CAS  Google Scholar 

  • Nilas, L., Gotrfredsen, A., Hadberg, A., and Christiansen, C., 1988, Age-related bone loss in women evaluated by the single and dual photon technique, Bone and Mineral 4: 95.

    CAS  Google Scholar 

  • Nordin, B.E.C., Need, A.G., and Chatterton, B.E., 1990, The relative contributions of age and years since menopause to postmenopausal bone loss, J. Clin. Endocrinol. Metab. 70: 83.

    Article  CAS  Google Scholar 

  • Nordin, B.E.C., Need, A.G., Bridges, A., and Horowitz, M., 1992, Relative contributions of years since menopause, age, and weight to vertebral density in postmenopausal women, J Clin. Endocrinol. Metab. 74: 20.

    Article  CAS  Google Scholar 

  • Norimatsu, H., Mori, S., Uesato, T., Yoshikawa, T., and Kasuyama, N., 1989, Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan, Bone and Mineral 5: 213.

    Article  CAS  Google Scholar 

  • Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M., Frame, B., and Rao, D.S., 1983, Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis, J. Clin. Invest. 72: 1396.

    Article  CAS  Google Scholar 

  • Pesch, H.J., Becker, T., and Bischoff, W., 1990, `Physiological osteoporosis’ and `osteoblast insufficiency’ in old age, Arch. Orthop. Trauma Surg. 110:1.

    Google Scholar 

  • Ponder, S.W., McCormick, D.P., Fawcett, H.D., Palmer, J.L., McKernan, M.G., and Brouhard, B.H., 1990, Spinal bone mineral density in children aged 5.00 through 11.99 years, Am. J. Dis. Child. 144: 1346.

    CAS  Google Scholar 

  • Pun, K.K., Wong, F.H.W., and Loh, T., 1991, Rapid postmenopausal loss of total body and regional bone mass in normal southern Chinese females in Hong Kong, Osteoporosis Int. 1: 87.

    Google Scholar 

  • Recker, R.R., Kimmel, D.B., and Parfitt, A.M., 1988, Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females, J. Bone Min. Res. 3: 133.

    Article  CAS  Google Scholar 

  • Recker, R.R, Davies, K.M., Hinders, S.M., Heaney, R.P., Stegman, M.R., and Kimmel, D.B., 1992, Bone gain in young adult women, JAMA 368: 2403.

    Article  Google Scholar 

  • Reginster, J.Y., Deroisy, R., Albert, A., Sarlet, N., Collette, J., and Franchimont, P., 1990, Dual photon absorptiometry of lumbar spine in West European (Belgian) postmenopausal females: normal range and fracture threshold, Clin. Rheumatol. 9: 220.

    Article  CAS  Google Scholar 

  • Rico, H., Revilla, M., Hernandez, E.R., Villa, L.F., and Alvarez del Buergo, M., 1992, Sex differences in the acquisition of total bone mineral mass peak assessed through dual-energy x-ray absorptiometry, Calcif. Tissue Int. 51: 251.

    Article  CAS  Google Scholar 

  • Riggs, B.L., 199la, Physician’s Resource Manual on Osteoporosis,2d ed., National Osteoporosis Foundation, Washington.

    Google Scholar 

  • Riggs, B.L., 1991b, Overview of osteoporosis, West. J Med. 154: 63.

    CAS  Google Scholar 

  • Riggs, B.L., Wahner, H.W., Seeman, E., Offord, K.P., Dunn, W.L., Mazess, R.B., Johnson, K.A. and Melton, L.J., 1982, Changes in bone mineral density of the proximal femur and spine with aging, J Clin. Invest. 70: 716.

    Article  CAS  Google Scholar 

  • Riggs, B.L., Wahner, H.W., Dunn, W.L., Mazess, R.B., Offord, K.P., and Melton, L.J., III, 1981, Differential changes in bone mineral density of the appendicular skeleton with aging, J Clin. Invest. 67: 328.

    Article  CAS  Google Scholar 

  • Riggs, B.L., Wahner, H.W., Melton, L.J., III, Richelson, L.S., Judd, H.L. and Offod, K.P., 1986, Rates of bone loss in the appendicular and axial skeletons of women, J Clin. Invest., 77: 1487.

    Article  CAS  Google Scholar 

  • Rosenthal, D.I., Mayo-Smith, W., Hayes, C.W., Khurana, J.S., Biller, B., Neer, R.M., and Klibanski, A., 1989, Age and bone mass in premenopausal women, J. Bone Min. Res. 4: 533.

    Article  CAS  Google Scholar 

  • Rubin, C.D., 1991, Southwestern internal medicine conference: Age-related osteoporosis, Am. J. Med. Sci. 301: 281.

    Article  CAS  Google Scholar 

  • Sambrook, P.N., Eisman, J.A., Furler, S.M., and Pocock, N.A., 1987, Computer modeling and analysis of cross-sectional bone density studies with respect to age and the menopause, J. Bone Min. Res. 2: 109.

    Article  CAS  Google Scholar 

  • Seto, H., Kamei, T., Futatsuya, R., Banba, Y., Ihaa, F., Kakishita, M., and Nanbu, I., 1990, Bone mineral density of the lumbar spine by dual photon absorptiometry: Age-related regression in normal Japanese subjects and fracture threshold in osteoporosis, Radiation Med. 8: 61.

    CAS  Google Scholar 

  • Sowers, M.F., Kshirsagar, A., Crutchfield, M., and Updike, S., 1991, Body composition, age, and femoral bone mass of young adult women, Ann. Epidemiol. 1: 245.

    Article  CAS  Google Scholar 

  • Stevenson, J.C., Lees, B., Devenport, M., Cust, M.P., and Ganger, K.F. 1989, Determinants of bone density in normal women: risk factors for future osteoporosis? BMJ 298: 924.

    Article  CAS  Google Scholar 

  • Sugimoto, T., Tsutsumi, M., Fujii, Y., Kawalaatsi, M., Negishi, H., Lee, M., Sai, K., Ukase, M., and Fujita, T., 1992, Comparison of bone mineral content among Japanese, Koreans, and Taiwanese assessed by dual-photon absorptiometry, J. Bone Min. Res. 7: 153.

    Article  CAS  Google Scholar 

  • Thompson, D.D., 1980, Age changes in bone mineralization, cortical thickness, and Haversian canal area, Calcif. Tissue Int., 31: 5.

    Google Scholar 

  • Trotter, M., Broman, G.E., and Peterson, R.R., 1960, Densities of bones of white and Negro skeletons, J. Bone Joint Surg. (Am.) 42: 50.

    Google Scholar 

  • Trouerbach, W.T., de Man, S.A., Gommers, D., Zwamborn, A., and Grobbee, D.E., 1991, Determinants of bone mineral content in childhood, Bone and Mineral 13: 55.

    Google Scholar 

  • Tsai, K.S., Huang, K.M., and Chieng, P.U., 1991, Bone mineral density of normal Chinese women in Taiwan, Calcif. Tissue Int. 48: 161.

    Article  Google Scholar 

  • Twomey, L., Taylor, J. and Furniss, B., 1983, Age changes in the bone density and structure of the lumbar vertebral column, J. Anat. 136: 15.

    CAS  Google Scholar 

  • van Berkum, F.N.R., Pols, H.A.P., Kooij, P.P.M., and Birkenhager, J.C., 1988, Peripheral and axial bone mass in Dutch women: relationship to age and menopausal state, Neth. J. Med. 32: 226.

    Google Scholar 

  • Vega, E., Mautalen, C, Gomez, H., Garrido, A., Melo, L., and Sahores, A.O., 1991, Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur, Osteoporosis Int. 1: 81.

    Google Scholar 

  • Wahner, H.W., Dunn, W.L., Brown, M.L., Morin, R.L., and Riggs, B.L., 1988, Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine, Mayo Clin. Proc. 63: 1075.

    Article  CAS  Google Scholar 

  • Weaver, J.K., and Chalmers, J., 1966, Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. I. Age changes in cancellous bone, J Bone Joint Surg. 48A: 289.

    CAS  Google Scholar 

  • Whyte, M.P., Bergfeld, M.A., Murphy, W.A., Avioli, L.V., and Teitelbaum, S.L., 1982, Postmenopausal osteoporosis, a heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients, Am. J. Med. 73: 193.

    Article  Google Scholar 

  • Yano, K., Wasnich, R.D., Vogel, J.M., and Heilbrun, K.L., 1984, Bone mineral measurements among middle-aged and elderly Japanese residents in Hawaii, Am. J. Epidemiol. 119: 751.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aloia, J.F. (1994). The Gain and Loss of Bone in the Human Life Cycle. In: Draper, H.H. (eds) Nutrition and Osteoporosis. Advances in Nutritional Research, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9092-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9092-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9094-8

  • Online ISBN: 978-1-4757-9092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics