Advertisement

Multifragmentation at Intermediate Energy: Dynamics or Statistics?

  • Luc Beaulieu
  • Larry Phair
  • Luciano G. Moretto
  • Gordon J. Wozniak

Abstract

Since the observation of a power-law behaviour in the charge distributions, characteristic of critical phenomena1, 2, in proton induced reactions at relativistic energies, the production of multiple intermediate mass fragments (IMF)6, 7, typically 3 ≤ Z ≤ 20, has been touted as a signature of the nuclear liquid-gas phase transition3, 4, 5. While this may be the case in peripheral reactions e. g. projectile or spectator breakup8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, the situation becomes less clear when one looks at more central reactions. In particular, it has been shown that the dissi-pative binary mechanism19, 20, 21, 22, 23 contributes 95% or more of the reaction cross section22, 23. Yet, as long as the sources are thermalized, it has been shown that a characteristic signature for phase coexistence can be extracted from the charge distributions24, 25. The situation is further complicated by the experimental observation of a significant contribution to the fragment yields from a third source formed between the projectile and target26, 27, 28, 29, 30, 31. Most of these observations were made using velocity plots (see for example ref. 27) which are useful in assigning a given particle to its primary source. This evidence points out the importance of dynamics in the entrance channel. Unfortunately, it tells very little about the intrinsic properties of the sources themselves. In particular, it does not disclosed the nature of the fragmentation process producing the detected “cold” IMF, i. e. at t → ∞.

Keywords

Excitation Energy Arrhenius Plot Transverse Energy Light Charged Particle Intermediate Mass Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Fisher, Physica 3, 225 (1967).Google Scholar
  2. 2.
    D. Stuffer and A. Aharony, Introduction to percolation theory, 2nd Ed. (Taylor and Francis, London, 1992) pp.181.Google Scholar
  3. 3.
    J.E. Finn et al., Phys. Rev. Lett 49, 1321 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Siemens, Nature 305, 410 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    A.D. Panagiotou et al., Phys. Rev. Lett 52, 496 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    B. Borderie, Ann, de Phys. 17, 349 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    L.G. Moretto and G.J. Wozniak, Ann. Rev. Nucl. Part. Sci. 43, 379 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    P. Désesquelles et al., Phys. Rev. C 48, 1828 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    P. Kreutz et al., Nucl. Phys. A556, 672 (1993).ADSGoogle Scholar
  10. 10.
    M.L. Gilkes et al., Phys. Rev. Lett 73, 1590 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    J. Pochodzalla et al., Phys. Rev. Lett 75, 1040 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    J. Benlliure, Ph.D. thesis, University of Valencia, Spain, 1995 (unpublished).Google Scholar
  13. 13.
    L. Beaulieu, Ph.D. thesis, Universit’e Laval, Canada, 1996 (unpublished).Google Scholar
  14. 14.
    P.F. Mastinu et al, Phys. Rev. Lett. 76, 2646 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    L. Beaulieu et al., Phys. Rev. C 54, R973 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Hauger et al., Phys. Rev. C 57, 764 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    B. Lott et al., Phys. Rev. Lett. 68, 3141 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    B.M. Quednau et al., Phys. Lett. B309, 10 (1993).ADSGoogle Scholar
  21. 21.
    J.F. Lecolley et al, Phys. Lett. B325, 317 (1994).ADSGoogle Scholar
  22. 22.
    J. Péter et al., Nucl. Phys. A593, 95 (1995).ADSGoogle Scholar
  23. 23.
    L. Beaulieu et al., Phys. Rev. Lett. 77, 462 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    L. Phair et al., Phys. Rev. Lett. 75, 213 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    L.G. Moretto et al., Phys. Rev. Lett. 76, 372 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    C.P. Montoya et al., Phys. Rev. Lett 73, 3070 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    J. Lukasik et al., Phys. Rev. C 55, 1906 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Larochelle et al., Phys. Rev. C 55, 1869 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    J. Toke et al., Phys. Rev. Lett. 75, 2920 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    J.F. Lecolley et al., Phys. Lett. B 354, 202 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    J. Toke et al., Phys. Rev. Lett 77, 3514 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    J. Toke et al., Phys. Rev. C 56, R1683 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    L.G. Moretto et al., Phys. Rev. Lett. 74, 1530 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    K. Tso et al., Phys. Lett. B 361, 25 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    L.G. Moretto, et al., Phys. Rep. 287, 249 (1997).ADSCrossRefGoogle Scholar
  37. 37.
    L. Phair et al., Phys. Rev. Lett 77, 822 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    L. Beaulieu et al., Submitted to Phys. Rev. Lett.Google Scholar
  39. 39.
    L.G. Moretto, et al., Phys. Rev. Lett. 71, 3935 (1993).ADSCrossRefGoogle Scholar
  40. 40.
    M.B. Tsang et al., Phys. Rev. Lett. 80, 1178 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    W. Skulski et al., to appear in Proc. 13th Workshop on Nuclear Dynamics, Key West, Florida (1997).Google Scholar
  42. 42.
    R.T. de Souza et al., Nucl. Inst. Meth. A 311, 109 (1992).Google Scholar
  43. 43.
    W.C. Kehoe et al., Nucl. Inst. Meth. A 311, 258 (1992).ADSCrossRefGoogle Scholar
  44. 44.
    J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    L. Phair et al., Accepted in Phys. Rev. Lett.Google Scholar
  46. 46.
    N. Colonna, private communication.Google Scholar
  47. 47.
    L. Phair et al., to be published.Google Scholar
  48. 48.
    D.W. Stracener et al., Nucl. Inst. Meth. A 294, 485 (1990).ADSGoogle Scholar
  49. 49.
    L.G. Moretto, Phys. Rev. 179, 1176 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Luc Beaulieu
    • 1
  • Larry Phair
    • 1
  • Luciano G. Moretto
    • 1
  • Gordon J. Wozniak
    • 1
  1. 1.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations