Di-Leptons at CERN

  • Wolfgang Bauer
  • Kevin Haglin
  • Joelle Murray


One of the premier challenges of the ultra-relativistic reaction physics program is to gain information on the space-time history of heavy-ion reactions. This is by no means a trivial undertaking, because all that is experimentally attainable is the measurement of the asymptotic momentum states of the final products of the reaction. Measuring two-particle correlations of hadrons emitted during the reaction provides at least an indirect way of obtaining space-time information.1 Hadronic probes, however, have large final state interactions and thus are not sensitive to the initial high-density and high-temperature phase of a heavy-ion reaction. Consequently, any information embedded in hadronic dynamics is completely masked by multiple scatterings. Dileptons are not disturbed by the hadronic environment even though they are produced at all stages of the collisions as they have long mean free paths. They are dubbed “clean probes” of the collision dynamics. This is what we need, if we want to learn about possible phase transitions (quark-gluon-plasma formation, restoration of chiral symmetry,...) in the early stages of ultra-relativistic heavy-ion collisions.


Invariant Mass Lepton Pair Invariant Mass Spectrum Dilepton Production Dalitz Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Bauer, C.K. Gelbke, and S. Pratt, Annu. Rev. Nuci Part. Sci. 42, 77 (1992)ADSCrossRefGoogle Scholar
  2. W. Bauer, Prog, in Part, and Nucl. Phys. 30, 45 (1993).ADSCrossRefGoogle Scholar
  3. 2.
    A. D. Jackson and H. Boggild, Nucl. Phys. A470, 669 (1987).ADSGoogle Scholar
  4. 3.
    G. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995).ADSCrossRefGoogle Scholar
  5. 4.
    W. Cassing, W. Ehehalt, and C.M. Ko, Phys. Lett. B363, 35 (1995).ADSGoogle Scholar
  6. 5.
    A. Drees, Nuci Phys. A610, 536c (1996).ADSCrossRefGoogle Scholar
  7. 6.
    G. Q. Li, C. M. Ko, and G. E. Brown, Phys. Rev. Lett. 75, 4007 (1995).ADSCrossRefGoogle Scholar
  8. 7.
    K. Haglin, Nuci Phys. A584, 719 (1995).ADSCrossRefGoogle Scholar
  9. 8.
    B.-A. Li and W. Bauer, Phys. Rev. C 44, 450 (1991).ADSCrossRefGoogle Scholar
  10. 9.
    B.-A. Li, W. Bauer, and G.F. Bertsch, Phys. Rev. C 44, 2095 (1991).ADSCrossRefGoogle Scholar
  11. 10.
    See also the chapter by Barbera et ai in this volume.Google Scholar
  12. 11.
    C. Song, V. Koch, S. H. Lee, and C. M. Ko, Phys. Lett. B366, 379 (1996).ADSGoogle Scholar
  13. 12.
    R. Rapp, G. Chanfray, and J. Wambach, Phys. Rev. Lett. 76, 368 (1996).ADSCrossRefGoogle Scholar
  14. 13.
    J. Kapusta, D. Kharzeev, and L. McLerran, Phys. Rev. D 53, 5034 (1996).ADSCrossRefGoogle Scholar
  15. 14.
    A. Drees, Phys. Lett. B388, 380 (1996).ADSGoogle Scholar
  16. 15.
    K. L. Haglin, Phys. Rev. C 53 R2606 (1996).ADSCrossRefGoogle Scholar
  17. 16.
    For first suggestions and preliminary results of the importance of this mechanisms, see, K. Haglin, proceedings of INT/RHIC Workshop Electromagnetic Probes of Quark Gluon Plasma, January 24-27, 1996; and proceedings of International Workshop on Hadrons in Dense Matter, GSI, Darmstadt, 3-5 July 1996.Google Scholar
  18. 17.
    J. Murray, W. Bauer, and K. Haglin, Phys. Rev. C 57, 882 (1998).ADSCrossRefGoogle Scholar
  19. 18.
    K. Geiger and B. Müller, Nucl. Phys. A544, 467c (1992).ADSGoogle Scholar
  20. 19.
    K. Geiger and B. Müller, Nucl. Phys. B369, 600 (1992).ADSCrossRefGoogle Scholar
  21. 20.
    G. Kortemeyer, J. Murray, S. Pratt, K. Haglin, and W. Bauer, Phys. Rev. C 52, 2714 (1995).ADSCrossRefGoogle Scholar
  22. 21.
    G. Kortemeyer, J. Murray, S. Pratt, K. Haglin, and W. Bauer, NSCL Annual Report, 63 (1994).Google Scholar
  23. 22.
    X. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).ADSCrossRefGoogle Scholar
  24. 23.
    T. Sjöstrand, Computer Physics Commun. 82, 74 (1994).ADSCrossRefGoogle Scholar
  25. 24.
    H.L. Lai, J. Botts, J. Huston, J.G. Morfin, J.F. Owens, J. Qiu, W.K. Tung and H. Weerts, Phys. Rev. D 51, 4763 (1995).ADSCrossRefGoogle Scholar
  26. 25.
    J.A. Dankowych et. al., Phys. Rev. Lett. 38, 580, (1981).ADSCrossRefGoogle Scholar
  27. 26.
    J. Janssen, K. Holinde, and J. Speth, Phys. Rev. C49, 2763, (1994).ADSGoogle Scholar
  28. 27.
    K.L. Haglin, Proceedings of the International Workshop on Soft Dilepton Production, Lawrence Berkeley National Laboratory, 20-22 August, 1997, http://www.macdls.lbl.gov/dilepton.html.
  29. 28.
    J. Kapusta, P. Lichard, and D. Seibert, Phys. Rev. D 44, 2774 (1991).ADSCrossRefGoogle Scholar
  30. 29.
    C. Song, Phys. Rev. C47, 2861 (1993).ADSGoogle Scholar
  31. 30.
    R. Baier, M. Dirks, K. Redlich, Phys. Rev. D 55, 4344 (1997).ADSCrossRefGoogle Scholar
  32. 31.
    L. D. Landau and I. Ya. Pomeranchuk, DokL Akad. Nauk SSSR 92 535,(1953); 92 735 (1953).MATHGoogle Scholar
  33. 32.
    K. Haglin and S. Pratt, Phys. Lett. B 328, 255 (1994).ADSCrossRefGoogle Scholar
  34. 33.
    A. Drees, private communication.Google Scholar
  35. 34.
    J. Murray, Ph.D. thesis, Michigan State University (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Wolfgang Bauer
    • 1
  • Kevin Haglin
    • 2
  • Joelle Murray
    • 3
  1. 1.National Superconducting Cyclotron Laboratory and Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  2. 2.Department of PhysicsGrinnell CollegeGrinnellUSA
  3. 3.Department of PhysicsLinfield CollegeMcMinnvilleUSA

Personalised recommendations