Advertisement

Physics of the STAR Experiment at RHIC

  • John W. Harris
  • STAR Collaboration

Abstract

The primary motivation for studying relativistic heavy ion collisions is to gain an understanding of the equation of state of nuclear, hadronic and partonic matter, commonly referred to as nuclear matter. This endeavor is of cross-disciplinary interest to nuclear physics, astrophysics, cosmology and particle physics. Displayed in Fig. 1 is a schematic phase diagram of nuclear matter. The behavior of nuclear matter as a function of temperature and density (or pressure), shown in Fig. 1, is governed by its equation of state. Conventional nuclear physics is concerned primarily with the lower left portion of the diagram at low temperatures and near normal nuclear matter density. Here normal nuclei exist and at low excitation a liquid-gas phase transition is expected to occur. This is the focus of experimental studies using low energy heavy ions. At somewhat higher excitation, nucleons are excited into baryonic resonance states, along with accompanying particle production and hadronic resonance formation. In heavy ion collisions, such excitation is expected to create hadronic resonance matter. This region is presently accessible in heavy ion studies at the AGS accelerator facility at Brookhaven National Laboratory and at the SPS accelerator facility at CERN. As seen in the diagram, there is a possibility that some part of these collisions traverse the transition region into the quark-gluon plasma regime. Formation of a quark-gluon plasma, a deconfined state of quarks and gluons,1 is the major focus of relativistic heavy ion experiments at higher energies. For this purpose the Relativistic Heavy Ion Collider (RHIC)2 and associated experiments are presently under construction at Brookhaven for operation in 1999, and operation with heavy ions is also being planned for the LHC in 2005. As seen in the phase diagram, the anticipated temperature and density trajectories at RHIC (and for LHC heavy ions) lie close to that of the early universe, while those at the AGS and SPS occur at higher baryon densities.

Keywords

Nuclear Matter Time Projection Chamber Peripheral Collision Schematic Phase Diagram High Baryon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)ADSCrossRefGoogle Scholar
  2. G. Chapline and; L. Susskind, Phys. Rev. D20, 2610 (1979).ADSGoogle Scholar
  3. 2.
    Conceptual Design of the Relativistic Heavy Ion Collider, Brookhaven National Laboratory Report BNL 52195 (1989).Google Scholar
  4. 3.
    T.D. Lee and G.C. Wick, Phys. Rev. D9, 2291 (1974)ADSGoogle Scholar
  5. T.D. Lee, Rev. Mod. Phys. 47, 267 (1975).ADSCrossRefGoogle Scholar
  6. 4.
    Conceptual Design Report for the Solenoidal Tracker At RHIC, The STAR Collaboration, PUB-5347 (1992); J.W. Harris et al., Nucl. Phys. A566, 277c (1994).ADSGoogle Scholar
  7. 5.
    A. Boucham, et al., “Proposal for a Silicon Strip Detector for STAR”, SUBATECH(Nantes)-IRES(Strasbourg)-LEPSI(Strasbourg)-Wayne State U. Proposal 1998.Google Scholar
  8. 6.
    J. Berger, D. Roehrich, D. Schmischke, R. Stock, V. Lindenstruth, “Level-3 Trigger and Data Compression System” U. Frankfurt-U. Heidelberg Proposal 1998.Google Scholar
  9. 7.
    D.P. Mahapatra, et al., “Photon Multiplicity Measurements in the STAR Detector at RHIC”, Bhubaneswar-Calcutta-Chandigarh-Jaipur-Jammu-Mumbai Proposal, VECC Reports VECC/EXP/97-04 and 97-22.Google Scholar
  10. 8.
    S. Klein and E. Scannapieco, LBNL Report LBNL-40495, Proceedings on Intersections Between Particle and Nuclear Physics: 6th Conference, ed. T.W. Donnelly, AIP Press, p. 274 (1997); J. Nystrand and S. Klein, LBNL Report LBNL-41111, in Proceedings of Hadron’ 97, Brookhaven National Laboratory, August 25–30, 1997.Google Scholar
  11. 9.
    see paper by T. Hallman, these Proceedings.Google Scholar
  12. 10.
    K. Geiger and B. Mueller, Nucl. Phys. B369, 600 (1992).ADSCrossRefGoogle Scholar
  13. 11.
    E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).ADSCrossRefGoogle Scholar
  14. 12.
    K. Wilson, Proceedings of Quark Matter’ 95 Pre-conference Workshop, ed. J. Thomas and T. Hallman, Report No. UCRL-ID-121571, p. 55 (1995).Google Scholar
  15. 13.
    J. Rafelski and B. Mueller, Phys. Rev. Lett. 48, 1066 (1982).ADSCrossRefGoogle Scholar
  16. 14.
    J. Rafelski and A. Schnabel, “Intersections Between Nuclear and Particle Physics,” AIP Proceedings No. 176, 1068 (1988).Google Scholar
  17. 15.
    J. Rafelski, Phys. Rep. 88, 331 (1982).Google Scholar
  18. 16.
    M. Gyulassy and M. Pluemmer, Phys. Lett. B243 (1990) 432ADSGoogle Scholar
  19. X.N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).ADSCrossRefGoogle Scholar
  20. 17.
    S. Pratt, Phys. Rev. D33, 1314 (1986)ADSGoogle Scholar
  21. G. Bertsch, M. Gong and M. Tohyama, Phys. Rev. C37, 1896 (1988) andADSGoogle Scholar
  22. G. Bertsch, Nucl. Phys. A498, 151c (1989).Google Scholar
  23. 18.
    K.S. Lee, M.J. Rhoades-Brown and U. Heinz, Phys. Rev. C37, 1463 (1988).ADSGoogle Scholar
  24. 19.
    M. Gyulassy, Lawrence Berkeley Laboratory Preprint LBL-32051 (1992).Google Scholar
  25. 20.
    M. Gyulassy, Nucl. Phys. A400, 31c (1983)ADSGoogle Scholar
  26. L. Van Hove, Z. Phys. C27, 135 (1985).ADSGoogle Scholar
  27. 21.
    A. Shor, Phys. Rev. Lett. 54, 1122 (1985).ADSCrossRefGoogle Scholar
  28. 22.
    R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984)ADSGoogle Scholar
  29. T. Hatsuda and T. Kunihiro, Phys. Lett. B185, 304 (1987).ADSGoogle Scholar
  30. 23.
    J.D. Bjorken and L.D. McLerran, Phys. Rev. D20, 2353 (1979) andADSGoogle Scholar
  31. Y. Takahashi and S. Dake, Nucl. Phys. A461, 263C (1987).ADSGoogle Scholar
  32. 24.
    J.D. Bjorken, Int. J. Mod. Phys. A7, 4189 (1992)ADSGoogle Scholar
  33. K. Rajagopal and F. Wilczek, Nucl. Phys. B404, 577 (1993).ADSCrossRefGoogle Scholar
  34. 25.
    R. Bellwied, Proceedings of Quark Matter’ 95 Pre-conference Workshop, ed. J. Thomas and T. Hallman, Report No. UCRL-ID-121571, p. 41 (1995).Google Scholar
  35. 26.
    E.V. Shuryak and O.V. Zhirov, Phys. Lett. B89, 253 (1980) and Phys. Lett. B171, 99 (1986).ADSGoogle Scholar
  36. 27.
    P.V. Landshoff, Nucl. Phys. A498, 217 (1989).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John W. Harris
    • 1
  • STAR Collaboration
  1. 1.Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations