Advertisement

Light-Ion-Induced Multifragmentation: A Fast Evolutionary Process

  • V. E. Viola
  • D. S. Bracken
  • E. Renshaw Foxford
  • D. Ginger
  • R. G. Korteling
  • K. Kwiatkowski
  • R. Legrain
  • K. B. Morley
  • E. C. Pollacco
  • W.-C. Hsi
  • G. Wang

Abstract

GeV light-ion-induced reactions offer a unique tool for preparing hot, dilute nuclear matter. Mediated by multiple N-N scatterings and Δ-resonance excitations, central collisions produce a single, highly-excited source on a very fast time scale (20–30 fm/c).[1] The subsequent evolution of such systems toward multifragment disassembly follows a much different trajectory in the nuclear temperature-density phase diagram than for heavy ions—where significant compression and longer time scales are typically involved. Thus, light-ion- and heavy-ion-induced reactions provide complementary perspectives on attempts to extend our knowledge of the nuclear equation-of-state to a much wider range of temperature and density.

Keywords

Nuclear Matter Nuclear Matter Density Normal Nuclear Matter Density Statistical Multifragmentation Model Disassembly Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Cugnon et al., Nucl. Phys. A 379, 553 (1982); 462, 751 (1987).CrossRefGoogle Scholar
  2. 2.
    H. Müller and B.D. Serot, Phys. Rev. C 52, 2072 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    P. Danielewicz, Phys. Rev. C 51, 716 (1995).Google Scholar
  4. 4.
    G. Wang et al., Phys. Rev. C, in press.Google Scholar
  5. 5.
    W. Bauer et al., Phys. Rev. C 34, 2127 (1986); Phys. Rev. Lett. 61, 2534 (1988).Google Scholar
  6. 6.
    K.B. Morley et al., Phys. Lett. B 355, 52 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Yennello et al., Phys. Rev. C 48, 1092 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kwiatkowski et al., Phys. Rev. Lett. 74, 3756 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    L.G. Moretto, Nucl. Phys. A 247, 211 (1975).Google Scholar
  10. 10.
    D. Fox et al., Phys. Rev. C 47, R421 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    W.A. Friedman, Phys. Rev. C 42 667 (1990>Google Scholar
  12. 12.
    J. Bondorf et al., Nucl. Phys. A 443, 321 (1985); 436, 265 (1985). A. Botvina et al., Phys. Lett. B 294, 23 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    D.H.E. Gross and R. Heck, Phys. Lett. B 318, 405 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Yariv and Z. Fraenkel, Phys. Rev. C 24, 488 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    K. Kwiatkowski, W.A. Friedman et al., Phys. Rev. C 49, 1516 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. E. Viola
    • 1
  • D. S. Bracken
    • 1
  • E. Renshaw Foxford
    • 1
  • D. Ginger
    • 1
  • R. G. Korteling
    • 2
  • K. Kwiatkowski
    • 1
  • R. Legrain
    • 3
  • K. B. Morley
    • 1
  • E. C. Pollacco
    • 3
  • W.-C. Hsi
    • 1
  • G. Wang
    • 1
  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.Simon Fraser UniversityBurnabyCanada
  3. 3.C.E. SaclayGif-sur-Yvette, CedexFrance

Personalised recommendations