Advertisement

From Dissipative Collisions to Multiple Fragment Production — A Unified View

  • J. Tõke
  • B. Djerroud
  • W. Skulski
  • W. U. Schröder
  • D. K. Agnihotri
  • S. P. Baldwin
  • R. J. Charity
  • R. T. DeSouza
  • B. Lott
  • B. M. Quednau
  • D. G. Sarantites
  • L. G. Sobotka

Abstract

Over the last decade, much of the effort in intermediate-energy heavy-ion reaction studies has been focused on multifragmentation, [1, 2, 3, 4] a phenomenon leading to multiple intermediate-mass fragments (IMF) in the reaction exit channel. Since the standard statistical model appeared to be unable to account for the large observed IMF multiplicities, various models and scenarios have been proposed [5, 6, 7], which favor copious production of IMFs. On the other hand, in several recent studies [8, 9, 10], it was found that even in the Fermi energy domain, the binary dissipative collision scenario, well established at lower bombarding energies,[11] still accounts for most of the reaction cross section. The present paper shows that, like dissipative collisions, multiple-IMF emission is a dynamical process, driven by the kinetic energy of relative motion of projectile- and target-like fragments. A new, more complete, intermediate-energy heavy-ion reaction scenario is proposed that connects in a natural way the domains of dissipative collisions and multiple IMF production.

Keywords

Reaction Cross Section Crest Line Standard Statistical Model Total Thermal Energy Total Kinetic Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Gelbke and D. H. Boal, Prog. Part. Nuc1. Phys. 17:33 (1987), and references therein.Google Scholar
  2. 2.
    B. Borderie et al., Ann. Phys. (Fr) 17:349 (1992), and ref. therein.Google Scholar
  3. 3.
    D. R. Bowman et al., Phys. Rev. C46: 1834 (1992).ADSGoogle Scholar
  4. 4.
    L. G. Moretto and G. J. Wozniak, Anna. Rev. Nuct. Part. Sc .. 43:379 (1993), and references therein.Google Scholar
  5. 5.
    W. A. Friedman, Phys. Rev. Lett. 60:2125 (1988); Phys. Rev. C42: 667 (1990).CrossRefGoogle Scholar
  6. 6.
    J. Aichelin, Phys. Rep. 202: 233 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    D. H. E. Gross, Rep. Prog. Phys. 53: 605 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    B. Lott et al. Phys. Rev. Lett. 68: 3141 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    S.P. Baldwin, PhD. thesis, University of Rochester, (1994).Google Scholar
  10. 10.
    S.P. Baldwin et al., Phys. Rev. Lett. 74: 1299 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    W. U. Schröder, J. R. Huizenga, in Treatise in Heavy-Ion Science,D. A. Bromley, ed., Plenum Press, New York, London (1984), Vol 2:113, and references therein.Google Scholar
  12. 12.
    D.W. Stracener et al., Nuct. Instrum. Methods Phys. Res., Sect. A294: 485 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    L. G. Moretto et al. Phys. Rev. Lett. 74:1530 (1995); L. Phair et al. Phys. Rev. Lett. 75:213 (1995); L. G. Moretto et al. Phys. Rev. Lett. 76:372 (1996).Google Scholar
  14. 14.
    B. Lott et al., in Proceedings of the 9th Winter Workshop on Nuclear Dynamics, Key West, World Scientific, Singapore, New Jersey, London, Hong Kong, (1993), p. 159; J. Tôke et al., Phys. Rev. Lett. 75:2920 (1995).Google Scholar
  15. 15.
    N. Nicolis et al., computer code EVAP (unpublished); evolved from code PACE by A. Gavron, Phys. Rev. C 21: 230 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. Tõke
    • 1
  • B. Djerroud
    • 1
  • W. Skulski
    • 1
  • W. U. Schröder
    • 1
  • D. K. Agnihotri
    • 1
  • S. P. Baldwin
    • 1
  • R. J. Charity
    • 2
  • R. T. DeSouza
    • 3
  • B. Lott
    • 4
  • B. M. Quednau
    • 4
  • D. G. Sarantites
    • 2
  • L. G. Sobotka
    • 2
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA
  2. 2.Department of ChemistryWashington UniversitySt. LouisUSA
  3. 3.Department of ChemistryIndiana UniversityBloomingtonUSA
  4. 4.GANILCaenFrance

Personalised recommendations