Advertisement

Estimates of Electromagnetic Signals from Deconfined Matter Produced in Ultrarelativistic Heavy-Ion Collisions

  • B. Kämpfer
  • O. P. Pavlenko
  • A. Peshier
  • Martina Hentschel
  • G. Soff

Abstract

Electromagnetic signals, i.e., real and virtual photons, have proven to be experimentally accessible probes of highly excited, strongly interacting matter in intermediate and relativistic heavy-ion collisions, both for Bevalac energies1 and for SPS energies.2 Indeed, at SPS in CERN the three large dilepton experiments, which measure the decay products of the virtual photons either as electron — positron pairs (CERES) or muon — anti-muon pairs (NA38, HELIOS-3), have detected an ‘excess’ of observed dileptons, i.e., a larger number of pairs in certain phase space regions than it could be explained by simple superpositions of known hadron decay sources or individual pp collisions. This is particularly tempting, since it indicates interesting features at nucleon — nucleon center-of-mass energies of GeV already for such light projectile — target combinations as S + S, S + U, and 0 + U.

Keywords

Virtual Photon Hadron Matter Transverse Expansion Confinement Transition Dilepton Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Roche et al., Phys. Rev. Lett. 61:1069 (1988); Phys. Lett. B226: 228 (1989).ADSGoogle Scholar
  2. 2.
    M. Masera, Nucl. Phys. A590:93c (1995); P. Wurm, ibid p. 103c; S. Ramos, ibid, p. 117c.Google Scholar
  3. 3.
    W. Cassing et al., Phys. Lett. B363: 35 (1995).Google Scholar
  4. 4.
    A. Dumitru et al., Phys. Rev. C51: 2166 (1995).ADSGoogle Scholar
  5. 5.
    G. Boyd et al., Phys. Rev. Lett. 75: 4169 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    C. Adami and G. E. Brown, Phys. Rep. 234: 1 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    E. V. Shuryak, Phys. Rev. Lett. 68: 3270 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    K. Geiger, Phys. Rep. 258: 237 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    T. S. Biro et al., Phys. Rev. C48:1275 (1993); P. Levai et al., Phys. Rev. C51: 3326 (1995).Google Scholar
  10. 10.
    D. K. Srivastava et al., Phys. Lett. B329: 157 (1994).Google Scholar
  11. 11.
    B. Kämpfer et al., Z. Phys. C62:491 (1994); Phys. Rev. C52: 2704 (1995).CrossRefGoogle Scholar
  12. 12.
    L. Xiong and E. V. Shuryak, Phys. Rev. C49: 2203 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    L. McLerran and T. Toimela, Phys. Rev. D31: 545 (1985).ADSGoogle Scholar
  14. 14.
    J. Alam et al., Phys. Rev. D48: 1117 (1993).ADSGoogle Scholar
  15. 15.
    J. Kapusta et al., Phys. Rev. D44: 2774 (1991).ADSGoogle Scholar
  16. 16.
    B. Kämpfer and O. P. Pavlenko, Phys. Lett. B289: 127 (1992).Google Scholar
  17. 17.
    R. Vogt et al., Phys. Rev. C49: 3345 (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • B. Kämpfer
    • 1
    • 2
  • O. P. Pavlenko
    • 3
  • A. Peshier
    • 2
  • Martina Hentschel
    • 1
  • G. Soff
    • 1
  1. 1.Institut für Theoretische PhysikDresdenGermany
  2. 2.Forschungszentrum RossendorfDresdenGermany
  3. 3.Institute for Theoretical PhysicsKievUkraine

Personalised recommendations