Three-Dimensional Data Capture and Visualization

  • David Dean
Part of the NATO ASI Series book series (NSSA, volume 284)


Three-dimensional (3D) digitization of biological specimens overcomes many of the problems of specimen registration attendant when using “standard” two-dimensional views or projections. External surfaces can be digitized directly by hand with electromagnetic, laser-light, sound, servo-mechanism and stereophotogrammetric devices, which are reviewed here. Single-point source laser-light devices are generally the most precise. Data may be captured directly from external or internal surfaces as adjoining tomographic slices (e.g., microscope; CT, and MR not reviewed here). The resulting stack of slices may be used to produce an isosurface image. There are a great many visualization environments available, some of which are briefly described, that facilitate the construction of isosurface images and measurement collection from Three-dimensional images. Three-dimensional models of Three-Dimensional image data are usually “printed” in plastic via a variety of new technologies briefly summarized.


Root Mean Square Rapid Prototype Visualization Software Virtual Reality Application Visualization Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bookstein, F. L. 1991 Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  2. Coatrieux J. L. and C. Barillot 1990 A survey of 3D display techniques to render medical data. Pages 175–195 in K. H. Hoëhne, H. Fuchs, S. M. Pizer, (eds.) 3D imaging in medicine. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  3. Corner, B. D., S. Lele, and J. T. Richtsmeier. 1992. Measurement error of 3D landmark data. Quantitative Anthropology 3: 347–359.Google Scholar
  4. Corner, B., and J. T. Richtsmeier 1992 Cranial growth in the Squirrel monkey (Saimuri sciureus): A quantitative analysis using 3D coordinate data. American Journal of Physical Anthropology 87: 67–81.PubMedCrossRefGoogle Scholar
  5. Cutting, C. B., J. G. McCarthy, and D. B. Karron. 1988. 3D input of body surface data using a laser light scanner. Annals of Plastic Surgery 21: 38–45.Google Scholar
  6. Fruhauf, M. 1991. Volume visualization on workstations: Image quality and efficiency of different techniques. Comput. and Graphics 15: 101–107.Google Scholar
  7. Jacobs, P. 1993. Stereolithography: From art to part. Cutting Tool Engineering 45: l-3.Google Scholar
  8. Kalvin A. D. 1991. Segmentation and surface-based modeling of objects in 3D biomedical images. Ph.D. dissertation: New York University.Google Scholar
  9. Kalvin, A. D., C. B. Cutting, B. Haddad, and M. Noz. 1991. Constructing topologically connected surfaces for the comprehensive analysis of 3D medical structures. SPIE 1445: 247–258.CrossRefGoogle Scholar
  10. Kalvin A. D., D. Dean, J.-J. Hublin, and M. Braun. 1992. Visualization in anthropology: Reconstruction of human fossils from multiple pieces. Pages. 404–420 in A. E. Kaufman and G. M. Nielson, (eds.). Proceedings of IEEE Visualization ‘82.Google Scholar
  11. Krieg, J. C., H. R. Jones, A. G. Rodgers, and M. R. Schneider. 1992. A 4 millisecond, low latency, 120 Hz, electromagnetic tracker for virtual reality applications. Internal Application Note, Polhemus.Google Scholar
  12. Lele, S., and J. T. Richtsmeier. 1992. On comparing biological shapes: Detection of influential landmarks. American Journal of Physical Anthropology 87: 49–65.Google Scholar
  13. MacLarnon, A. M. 1989. Applications of the Reflex instruments in quantitative morphology. Folia Primatologica 53: 33–49.CrossRefGoogle Scholar
  14. Magnusson, M., R. Lenz, and P. E. Danielsson. 1991. Evaluation of methods for shaded surface display of CT volumes. Comput. Med. Imaging Graph. 15: 247–256.Google Scholar
  15. Raab, F. H., E. B. Blod, T. O. Steiner, and H. R. Jones 1979 Magnetic position and orientation tracking system. IEEE Trans. Aerospace and Elec. Sys. 15: 709–718.Google Scholar
  16. Richtsmeier, J. T., and A. Walker 1993. A morphometric study of facial growth. Pages 391–410 in A Walker and R Leakey (eds.), The Nariokotome Homo erectus skeleton. Harvard University Press: Cambridge.CrossRefGoogle Scholar
  17. Robb, A. R., and D. P. Hanson. 1991. A software system for interactive and quantitative visualization of multidimensional biomedical images. Austral. Phys. and Eng. Sci. in Med. 14: 9–30.Google Scholar
  18. Rogowitz, B. E., and L. A. Treinish. 1993. An architecture for rule-based visualization. Proceedings of IEEE Visualization `93: 236–234.Google Scholar
  19. Sandeman, D. R., N. Patel, C. Chandler, R. J. Nelson, H. B. Coakham, and H. B. Griffith. 1992. Advances in image directed neurosurgery: Preliminary experience with the ISG Viewing Wand compared with the Leksell G frame. Clinical MRI 2: 91–92.Google Scholar
  20. Udupa, J. K., and D. Odhner. 1993. Shell rendering. IEEE Comp. Graphics and Applic. 27: 58–67.Google Scholar
  21. Udupa, J. K., K. I. Goncalves, D. Narendula, D. Odhner, S. Samarasekera, and S. Sharma. 1993.3DVIEWNIX: An open, transportable software system for the visualization and analysis of multidimensional, multimodality, multiparametric images. SPIE 1897: 47–58.Google Scholar
  22. Vannier, M. W., and G. C. Conroy. 1989. Imaging workstations for computer-aided primatology: Promises and pitfalls. Folia Primatologica 53: 7–21.Google Scholar
  23. Vinarub, E. I., and N. Kapoor. 1992. 3D digitizing hidden surface using borescopic sensor technology. Proc. App. Machine Vision Conf. ‘82: MS92 160: 1–11.Google Scholar
  24. Wohlers, T. T. 1992. 3D Digitizers. Computer Graphics World 2: 73–77.Google Scholar
  25. Zinreich, J. S., S. A. Tebo, D. M. Long, H. Brem, D. E. Mattox, M. E. Loury, C. A. Vander Kolk, W. M. Koch, D. W. Kennedy, and R. N. Bryan. 1993. Frameless stereotaxic integration of CT imaging data: Accuracy and initial applications. Radiology 188: 735–742.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David Dean
    • 1
  1. 1.Department of AnatomyCase Western Reserve UniversityClevelandUSA

Personalised recommendations