Advertisement

Edgels and Tangent Planes in Image Warping

  • John Little
  • Kanti Mardia
Chapter
Part of the NATO ASI Series book series (NSSA, volume 284)

Abstract

In this paper we first describe generally the uses of thin-plate splines for image deformation. We then go on to demonstrate why we feel that incorporating edgel information into a warp has great potential. An extension to the edgel method of Bookstein and Green (1993a,b) is outlined for use in three dimensions. Finally we give an example of the results of using this formulation for three-dimensional magnetic resonance images of the human head.

Keywords

Human Head Tangent Plane Image Deformation Deformation Matrix Virtual Reality Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.CrossRefGoogle Scholar
  2. Bookstein, F. L., and W. D. K. Green. 1993a. A thin-plate spline for deformations with specified derivatives. Pages 14–28 in Mathematical methods in medical Imaging II. S.P.I.E. Proceedings 2035.CrossRefGoogle Scholar
  3. Bookstein, F. L., and W. D. K. Green 1993b. A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision 3: 231–261.CrossRefGoogle Scholar
  4. Brown, L. G. 1992. A survey of image registration techniques. ACM Computing Surveys 24 (4): 325–376.CrossRefGoogle Scholar
  5. Cover, S. A., N. F. Ezquerra, J. F. O’Brien. R. Rowe. T. Gadacz, and E. Palm. 1993. Interactively deforntable models for surgery simulation. IEEE Comp. Graph. and Appl. 13 (6): 68–75.CrossRefGoogle Scholar
  6. Mardia, K. V., J. T. Kent, C. R. Goodall, and J. A. Little. 1996. Kriging and splines with derivative information. Biometrika, 83 (1): 207–221.CrossRefGoogle Scholar
  7. Mardia, K. V., and J. A. Little. 1994. Image warping using derivative information. Pages 16–31 in Mathematical methods in medical imaging III. S.P.I,E. Proceedings 2299.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • John Little
    • 1
  • Kanti Mardia
    • 2
  1. 1.Imaging Processing Group Division of Radiological SciencesGuy’s HospitalLondonUK
  2. 2.Department of StatisticsUniversity of LeedsLeedsUK

Personalised recommendations