Genetics of Meloidogyne Virulence Against Resistance Genes from Solanaceous Crops

  • Philippe Castagnone-Sereno
Part of the NATO ASI Series book series (NSSA, volume 268)


The genetic basis of plant-pathogen interaction is built on the gene-for-gene concept (Flor, 1942), which states that for each gene conferring resistance in the host plant, there is a matching or complementary gene in the pathogen, called an avirulence gene. In this hypothesis, both plant resistance gene and pathogen avirulence gene are dominant (Gabriel and Rolfe, 1990), and only the confrontation between both dominant alleles results in the hypersensitive reaction in the plant, often associated with a cascade of other defence responses (Figure 1). The gene-for-gene complementarity occurs most frequently in plant-pathogen interactions involving obligate and biotrophic parasites which are highly specialized and have a narrow host range (Heath, 1981; Keen, 1982). Since Flor’s work in the 1940s, many avirulence genes have been identified by classical genetic studies in plant-pathogen interactions including viruses, bacteria, fungi, insects and nematodes (Sidhu, 1987), but only recently have they been cloned and characterized in the cases of viruses, bacteria, and more recently fungi. The first bacterial avirulence gene cloned was avrA from Pseudomonas syringae (Staskawicz et al., 1984), the first viral avirulence gene cloned was the coat protein gene of the tobacco mosaic virus (Culver and Dawson, 1991), and the first fungal avirulence gene cloned was avr9 from Cladosporium fulvum (Van Kan et al., 1991).


Soybean Cyst Nematode Avirulence Gene Isofemale Line Virulent Line Resistant Tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, D.M., 1941, The seedling test method for root-knot nematode resistance, Proc. Am. Soc. Hortic. Sci. 38:573.Google Scholar
  2. Bakker, J., Folkertsma, R.T., Rouppe Van Der Voort, J.N.A.M., De Boer, J.M., and Gommers, F.J., 1993, Changing concepts and molecular approaches in the management of virulences genes in potato cyst nematodes, Annu. Rev. Phytopathol. 31:169.PubMedCrossRefGoogle Scholar
  3. Bauw, G., DeLoose, M., Inze, D., Van Montagu, M., and Vandekerckhove, J., 1987, Alterations in the phenotype of plant cells studied by NH2-terminal amino acid-sequence analysis of proteins electroblotted from two-dimensional gel-separated total extracts, Proc. Natl. Acad. Sci. USA 84:4806.PubMedCrossRefGoogle Scholar
  4. Bell, A.A., 1981, Biochemical mechanisms of disease resistance, Annu. Rev. Plant Physiol. 32:21.CrossRefGoogle Scholar
  5. Berthou, F., Ba-Diallo, A., De Maeyer, L., and De Guiran, G., 1989, Caractérisation chez les nématodes Meloidogyne Gocldi (Tylenchida) de types virulents vis-à-vis du gène Mi de la tomate dans deux zones maraîchères au Sénégal, Agronomie 9:877.CrossRefGoogle Scholar
  6. Bost, S.C., 1982, “Genetic studies of the Lycopersicon esculentum-Meloidogyne incognita interaction,” Ph. D. Dissertation, North Carolina State University.Google Scholar
  7. Castagnone-Sereno, P., Bongiovanni, M., and Dalmasso, A., 1992, Differential expression of root-knot nematode resistance genes in tomato and pepper: evidence with Meloidogyne incognita virulent and avirulent near-isogenic lineages, Ann. Appl. Biol. 120:487.CrossRefGoogle Scholar
  8. Castagnone-Sereno, P., Bongiovanni, M., and Dalmasso, A., 1993, Stable virulence against the tomato resistance Mi gene in the parthenogenctic root-knot nematode Meloidogyne incognitaPhytopathology 83:803.CrossRefGoogle Scholar
  9. Castagnone-Sereno, P., Piotte, C., Abad, P., Bongiovanni, M., and Dalmasso, A., 1991, Isolation of a repeated DNA probe showing polymorphism among Meloidogyne incognita populations, J. Nematol. 23:316.PubMedGoogle Scholar
  10. Castagnone-Sereno, P., Piotte, C., Uijthof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., and Dalmasso, A., 1993, Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis, Heredity 70:195.CrossRefGoogle Scholar
  11. Castagnone-Sereno, P., Wajnberg, E., Bongiovanni, M., Leroy, F., and Dalmasso, A., 1994, Genetic variation in Meloidogyne incognita virulence against the tomato Mi resistance gene: evidence from isofemale line selection studies, Theor. Appl. Genet, in press.Google Scholar
  12. Clayton, E.E., Graham, T.W., Tood, F.A., Gaines, J.G., and Clark, F.A., 1958, Resistance to the root-knot disease of tobacco, Tobacco Sci. 2:53.Google Scholar
  13. Cochran, B.H., Reffel, A.C., and Stiles, C.D., 1983, Molecular cloning of gene sequences regulated by platelet-derived growth factor, Cell 33:939.PubMedCrossRefGoogle Scholar
  14. Culver, J.N., and Dawson, W.O., 1991, Tobacco mosaic virus coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants, Mol. Plant-Microbe Inter. 4:458.CrossRefGoogle Scholar
  15. Dalmasso, A., Castagnone-Sereno, P., and Abad, P., 1992, Tolerance and resistance of plants to nematodes. Knowledge needs and prospects, Nematologica 38:466.CrossRefGoogle Scholar
  16. Dalmasso, A., Castagnone-Sereno, P., Bongiovanni, M., and De Jong, A., 1991, Acquired virulence in the plant parasitic nematode Meloidogyneincognita. II. Two-dimensional analysis of isogenic isolates, Rev. Nématol. 14:305.Google Scholar
  17. Daunay, M.C., and Dalmasso, A., 1985, Multiplication de Meloidogyne javanica, M. incognita, et M. arenaria sur divers Solanum, Rev. Nematol. 8:31.Google Scholar
  18. Eckerskorn, C., Jungblut, P., Mewes, W., Klose, J., and Lottspeich, F., 1988, Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis, Electrophoresis 9:830.PubMedCrossRefGoogle Scholar
  19. Fassuliotis, G., 1979, Plant breeding for root-ncmatode resistance, in: ”Root-knot Nematodes (Meloidogyne species). Systcmatics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.Google Scholar
  20. Fassuliotis, G., 1987, Genetic basis of plant resistance to nematodes, in: “Vistas on Nematology,” J.A. Veech and Dickson, D.W., eds., Society of Nematologists, Hyattsville.Google Scholar
  21. Field, L.M., Devonshire, A.L., and Forbe, B.G., 1988, Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene, Biochem. J. 251:309.PubMedGoogle Scholar
  22. Flor, H.H., 1942, Inheritance of pathogenicity in Melampsora lini, Phytopathology 32:653.Google Scholar
  23. Gabriel, D.W., and Rolfe, B.G., 1990, Working models of specific recognition in plant-microbe interactions, Annu. Rev. Phytopathol. 28:365.CrossRefGoogle Scholar
  24. Gilbert, J.C., and Mac Guire, D.C., 1955, One major gene for resistance to severe galling from Meloidogyne incognita, Tomato Genet. Coop. Rep. 5:15.Google Scholar
  25. Gomez, P.L., Plaisted, R.L., and Brodie, B.B., 1983, Inheritance of the resistance to Meloidogyne incognita, M. javanica and M. arenaria in potatoes, Am. Potato J. 60:339.CrossRefGoogle Scholar
  26. Gommers, F.J., Roosien, J., Schouten, A., De Boer, J.M., Overmars, H.A., Bouwman, L., Folkertsma, R., Van Zandvoort, P., Van Gentpelzer, M., Schots, A., Janssen, R., and Bakker, J., 1992, Identification and management of virulence genes in potato cyst nematodes, Neth. J. Plant Pathol. Supp. 2:157.CrossRefGoogle Scholar
  27. Graham, T.W., 1969, A new pathogenic race of Meloidogyne incognita on flue-cured tobacco, Tobacco Sci. 13:43.Google Scholar
  28. Hara, E., Nakada, S., Takehana, K., Nakajima, T., Iino, T., and Oda, K., 1988, Molecular cloning and characterization of cellular genes whose expression is repressed by the adenovirus Ela gene products and growth factors in quiescent rat cells, Gene 70:97.PubMedCrossRefGoogle Scholar
  29. Hare, W.W., 1956, Resistance in pepper to Meloidogyne incognita acrita, Phytopathology 46:98.Google Scholar
  30. Hare, W.W., 1957, Inheritance of resistance to root-knot nematodes in pepper, Phytopathology 47:669.Google Scholar
  31. Heath, M.C., 1981, A generalized concept of host-parasite specificity, Phytopathology 71:1121.CrossRefGoogle Scholar
  32. Hedrick, S.M., Cohen, D.I., Nielsen, E.A., and Davis, M.M., 1984, Isolation of cDNA clones encoding T cell-specific membrabe-associated proteins, Nature 308:149.PubMedCrossRefGoogle Scholar
  33. Hendy, H., Pochard, E., and Dalmasso, A., 1983, Identification de deux nouvelles sources de résistance aux nématodes du genre Meloidogyne chez le piment, Capsicum annuum L., C.R. Acad. Agr. Fr. 817.Google Scholar
  34. Hendy, H., Pochard, E., and Dalmasso, A., 1985, Transmission héréditaire de la résistance aux nématodes Meloidogyne Chitwood (Tylenchida) portée par deux lignées de Capsicum annuum L. Etude de descendances homozygotes issues d’androgenèse, Agronomie 5:93.CrossRefGoogle Scholar
  35. Ho, J.Y., Weide, R., Ma, H.M., Van Mordragen, M.F., Lambert, K.N., Koornneef, M., Zabel, P., and Williamson, V.M., 1992, The root-knot resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes, Plant J. 2:971.PubMedGoogle Scholar
  36. Janssen, R., Bakker, J., and Gommers, F.J., 1990, Selection of virulent and avirulent lines of Globodera rostochiensis for the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673, Rev. Nématol. 13:265.Google Scholar
  37. Janssen, R., Bakker, J., and Gommers, F.J., 1991, Mendelian proof for a gene-for-gene relationship between virulence of Globodera rostochiensis and the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673, Rev. Nématol. 14:207.Google Scholar
  38. Jarquin-Barberena, H., Dalmasso, A., De Guiran, G., and Cardin, M.C., 1991, Acquired virulence in the plant parasitic nematode Meloidogyne incognita. I. Biological anlysis of the phenomenon, Rev. Nématol. 14:299.Google Scholar
  39. Kearney, B., Ronald, P.C., Dahlbeck, D., and Staskawicz, B.J., 1988, Molecular basis for evasion of plant host defence in bacterial spot disease of pepper, Nature 332:541.CrossRefGoogle Scholar
  40. Keen, N.T., 1982, Specific recognition in gene-for-gene host-parasite systems, Adv. Plant Pathol. 1:35.Google Scholar
  41. Keen, N.T., 1992, The molecular biology of disease resistance, Plant Mol. Biol. 19:109.PubMedCrossRefGoogle Scholar
  42. Klose, J., 1989, Systematic analysis of the total proteins of a mammalian organism: principles, problems and implications for sequencing the human genome, Electrophoresis 10:140.PubMedCrossRefGoogle Scholar
  43. Kobayashi, D.Y., Tamaki, S.J., Trollinger, D.J., Gold, S., and Keen, N.T., 1990, A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P.s. pv. tomato but devoid of the avirulence phenotype, Mol. Plant-Microbe Inter. 3:103.CrossRefGoogle Scholar
  44. Lange, W., Müller, J., and De Bock, T.S.M., 1993, Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet, Fundam. Appl. Nematol. 16:447.Google Scholar
  45. Luedders, V.D., 1983, Genetics of the cyst nematode-soybean symbiosis, Phytopathology 73:944.CrossRefGoogle Scholar
  46. Luedders, V.D., 1987, A recessive gene for a zero cyst phenotype in soybean, Crop Sci. 27:604.CrossRefGoogle Scholar
  47. Luedders, V.D., 1989, Selection for zero cyst phenotypes with soybean, Ann. Appl. Biol. 114:509.CrossRefGoogle Scholar
  48. Luedders, V.D., 1990, A recessive soybean cyst nematode allele for incompatibility with soybean PI 88287, Ann. Appl. Biol. 116:321.CrossRefGoogle Scholar
  49. Medina-Fihlo, H.P., and Tanksley, S.D., 1983, Breeding for nematode resistance, in: “Handbook of Plant Cell Culture,” Vol.1, 1.D.A. Evans, Sharp, W.R., Ammirato, P.V., and Yamada, Y., eds., Macmillan, New York.Google Scholar
  50. Mendoza, H.A., and Jatala, P., 1985, Breeding potatoes for resistance to the root-knot nematode Meloidogyne species, in: “An Advanced Treatise on Meloidogyne. Vol. I. Biology and Control,” J.N. Sasser and Carter, C.C., eds., North Carolina State University Graphics, Raleigh.Google Scholar
  51. Messeguer, R., Ganal, M., De Vicente, M.C., Young, N.D., Bolkan, H., and Tanskley, S.D., 1991, High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato, Theor. Appl. Genet. 82:529.CrossRefGoogle Scholar
  52. Mouchès, C., Pasteur, N., Berge, J.B., Hyrien, O., Raymond, M., Robert de Saint Vincent, B., De Silvestri, M., and Georghiou, G.P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778.PubMedCrossRefGoogle Scholar
  53. Müller, J., 1992, Detection of pathotypes by assessing the virulence of Heterodera schachtii populations. Nematologica 38:50.CrossRefGoogle Scholar
  54. Netscher, C., 1976, Observations and preliminary studies on the occurrence of resistance breaking biotypes of Meloidogyne spp. on tomato, Cah. ORSTOM, Sér. Biol. 11:173.Google Scholar
  55. Netscher, C., 1983, Problems in the classification of Meloidogyne reproducing by mitotic parthenogenesis, in: “Concepts in Nematode Systematics,” A.R. Stone, Platt, H.M., and Khalil, L.F., eds., Academic Press, London.Google Scholar
  56. Netscher, C., and Taylor, D.P., 1979, Physiologic variation within the genus Meloidogyne ans its implication on integrated control, in: “Root-knot Nematodes (Meloidogyne species). Systematics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.Google Scholar
  57. Nijboer, N., and Parlevliet, J.E., 1990, Pathotype-specificity in potato cyst nematodes, a reconsideration, Euphytica 49:39.CrossRefGoogle Scholar
  58. Noe, J.P., 1992, Variability among populations of Meloidogyne arenaria, J. Nematol. 24:404–414.PubMedGoogle Scholar
  59. Parrott, D.M., 1981, Evidence for gene-for-gene relationships between resistance gene H1 from Solanum tuberosum ssp. andigena and a gene in Globodera rostochiensis and between H2 from S. multidissectum and a gene in G. pallida, Nematologica 27:372.CrossRefGoogle Scholar
  60. Parsons, P.A., 1980, Isofemale strains and evolutionary strategies in natural populations, in: “Evolutionary Biology,” Vol. XIII, M. Hetch, Stecre, W., and Wallace, B., eds., Plenum Press, New York.Google Scholar
  61. Piotte, C., Castagnone-Sereno, P., Uijthof, J., Abad, P., Bongiovanni, M., and Dalmasso, A., 1992, Molecular characterization of species and populations of Meloidogyne from various geographic origins with repeated-DNA homologous probes, Fundam. Appl Nematol. 15:271.Google Scholar
  62. Prot, J.C., 1984, A naturally occurring resistance breaknig biotype of Meloidogyne arenaria on tomato. Reproduction and pathogenicity on tomato cultivars Roma and Rossol, Rev. Nématol. 7:23.Google Scholar
  63. Riggs, R.D., and Winstead, N.N., 1959, Studies on resistance in tomato to root-knot nematodes and on the occurrence of pathogenic biotypes, Phytopathology 49:716.Google Scholar
  64. Roninson, I. B., 1983, Detection and mapplng of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels, Nucl. Acids Res. 2:1911.Google Scholar
  65. Sasser, J.N., 1979, Pathogenicity, host ranges and variability in Meloidogyne species, in: “Root-knot Nematodes (Meloidogyne species). Systematics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.Google Scholar
  66. Shaner, G., Stromberg, E.L., Lacy, G.H., Barker, K.R., and Pirone, T.P., 1992, Nomenclature and concepts of pathogenicity and virulence, Annu. Rev. Phytopathol. 30:47.PubMedCrossRefGoogle Scholar
  67. Sidhu, G. S., 1987, Host-parasite genetics, in: “Plant Breeding Reviews,” J. Janick, ed., Van Nostrand Reinhold, New York.Google Scholar
  68. Sikora, R.A., Sitaramaiah, K., and Singh, R.S., 1973, Reaction of root-knot nematode-resistant tomato cultivars to Meloidogyne javanica in India, Plant Dis. Reptr. 57:141.Google Scholar
  69. Slana, J.L., and Stavely, J.R., 1981, Identification of the chromosome carrying the factor for resistance to Meloidogyne incognita in tobacco, J. Nematol. 13:61.PubMedGoogle Scholar
  70. Southards, C.J., and Priest, M.F., 1973, Variation in pathogenicity of seventeen isolates of Meloidogyne incognita, J. Nematol. 5:63.PubMedGoogle Scholar
  71. Staskawicz, B.J., Dahlbeck D., and Keen, N.T., 1984, Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr., Proc. Natl. Acad. Sci. USA 81:6024.PubMedCrossRefGoogle Scholar
  72. Straus, D., and Ausubel, F.M., 1990, Genomic substraction for cloning DNA corresponding to deletion mutations, Proc. Natl. Acad. Sci. USA 87:1889.PubMedCrossRefGoogle Scholar
  73. Tanksley, S.D., Bernatzky, R., Laitan, N.L., and Prince, J.P., 1988, Conservation of gene repertoire but not gene order in pepper and tomato, Proc. Natl. Acad. Sci. USA 85:6419.PubMedCrossRefGoogle Scholar
  74. Taylor, D.P., 1975, Observations on a resistant and a susceptible variety of tomato in a field heavily infested with Meloidogyne in Senegal, Cah. ORSTOM, Sér. Biol. 10: 239.Google Scholar
  75. Travis, G.H., Brennan, M.B., Danielson, P.E., Kozak, C.A., and Sutcliffe, J.G., 1989, Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds), Nature 338:70.PubMedCrossRefGoogle Scholar
  76. Triantaphyllou, A.C., 1985, Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes, in: “An Advanced Treatise on Meloidogyne. Vol. I. Biology and Control,” J.N. Sasser and Carter, C.C., eds., North Carolina State University Graphics, Raleigh.Google Scholar
  77. Triantaphyllou, A.C., 1987, Genetics of nematode parasitism on plants, in: “Vistas on Nematology,” J.A. Veech and Dickson, D.W., eds., Society of Nematologists, Hyattsville.Google Scholar
  78. Triantaphyllou, A.C., and Sasser, J.N., 1960, Variation in perineal patterns and host specificity of Meloidogyne incognita, Phytopathology 50:724.Google Scholar
  79. Trudgill, D.L., 1991, Resistance to and tolerance of plant parasitic nematodes in plants, Annu. Rev. Phytopathol. 29:167.CrossRefGoogle Scholar
  80. Turner, S.J., 1990, The identification and fitness of virulent potato cyst-nematode populations (Globodera pallida) selected on resistant Solanum vernei hybrids for up to eleven generations, Ann. Appl. Biol. 117:385.CrossRefGoogle Scholar
  81. Turner, S.J., Stone, A.R., and Perry, J.N., 1983, Selection of potato cyst-nematodes on resistant Solanum vernei hybrids, Euphytica 32:911.CrossRefGoogle Scholar
  82. Van Der Plank, J.E., 1982, “Host Pathogen Interactions in Plant Disease,” Academic Press, New York.Google Scholar
  83. Van Kan, J.A.L., Van Den Ackerveken, G.F.J.M., and De Wit, P.J.G.M., 1991, Cloning and characterization of of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold, Mol. Plant-Microbe Inter. 4:52.CrossRefGoogle Scholar
  84. Viglierchio, D.R., 1978, Resistant host responses to ten California populations of Meloidogyne incognita, J. Nematol. 10:224.PubMedGoogle Scholar
  85. Weigel, R.J., and Nevins, J.R., 1990, Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression, Nucl. Acids Res. 18:6107.PubMedCrossRefGoogle Scholar
  86. Whitehead, A.G., 1991, Selection for virulence in the potato cyst-nematode Globodera pallida, Ann. Appl. Biol. 118:395.CrossRefGoogle Scholar
  87. Wieland, I., Bolger, G., Asouline, G., and Wigler, M., 1990, A method for difference cloning: gene amplification following substractive hybridization, Proc. Natl. Acad. Sci. USA 87:2720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Philippe Castagnone-Sereno
    • 1
  1. 1.Laboratoire de Biologie des InvertébrésINRAAntibes CédexFrance

Personalised recommendations