Bioengineering Resistance to Sedentary Endoparasitic Nematodes

  • Charles H. Opperman
  • Gregoria N. Acedo
  • David M. Saravitz
  • Andrea M. Skantar
  • Wen Song
  • Christopher G. Taylor
  • Mark A. Conkling
Part of the NATO ASI Series book series (NSSA, volume 268)


Bioengineering host resistance to 01ant parasitic nematodes is still a mostly speculative topic. There have been very few examples of plants engineered to have reduced susceptibility to any species of nematode. This, in part, is due to the lack of key information regarding host-parasite relationships. It is difficult to design strategies to engineer resistance when there is not a readily identifiable molecular mechanism to target. There are now many labs actively pursuing molecular aspects of nematode-host interactions, but the practical applications of this work may still be several years off. Other chapters in this book describe in detail studies on nematode feeding site formation, resistance mechanisms, host responses, and nematode stylet secretions. We will use some of this information to set the stage for potential approaches to bioengineered resistance to plant parasitic nematodes.


Transgenic Plant Giant Cell Cyst Nematode Plant Parasitic Nematode Nematode Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able, P.P., Nelson, R.S., De, B., Hoffman, N., Rogers, S.G., Fraley, R.T., and Beachey, R.N., 1986, Delay of disease development in transgenic plants expressing the tobacco mosaic virus coat protein gem, Science 232:738.CrossRefGoogle Scholar
  2. Barton, K.A., Whitely, H.R., and Yang, N.-S., 1987, Bacillus thuringiensis Δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopterous insects, Plant Physiol. 85:1103.PubMedCrossRefGoogle Scholar
  3. Benfey, P.N., Ren, L., and Chua, N.-H., 1989, The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns, EMBO J. 8:2195.PubMedGoogle Scholar
  4. Bird, A.F., and Bird, J., 1991, “The Structure of Nematodes,” 2nd edition, Academic Press, San Diego.Google Scholar
  5. Bowles, D.J., 1990, Defense related proteins in higher plants, Ann. Rev. Biochem. 59:873–907.PubMedCrossRefGoogle Scholar
  6. Bowles, D.J., Gurr, S.J., Scollan, C., and Atkinson, H.J., 1991, Local and systemic changes in plant gene expression following root infection by cyst nematodes, in: “Biochemistry and Molecular Biology of Plant-Pathogen Interactions,” C.J. Smith, ed., Oxford Science Publications, Oxford.Google Scholar
  7. Burrows, P.R., 1992, Molecular analysis of the interactions between cyst nematodes and their hosts, J. Nematol. 24:338.PubMedGoogle Scholar
  8. Bradley, E. B., and Duffy, M., 1982, The value of plant resistance to the soybean cyst nematode: A case study of Forrest soybean, USDA-ARS Staff Report AGES820929, Washington, D. C.Google Scholar
  9. Broglie, K, Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvias, C.J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194.PubMedCrossRefGoogle Scholar
  10. Chappell, J., Von Lanken, C., and Vogeli, U., 1991, Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures, Plant Physiol. 97:693.PubMedCrossRefGoogle Scholar
  11. Conkling, M. A., Cheng, C.-L., Yamamoto, Y.T., and Goodman H.M., 1990, Isolation of transcriptionally regulated root-specific genes from tobacco, Plant Physiol. 93:1203.PubMedCrossRefGoogle Scholar
  12. Cook, R., and Evans, K., 1987, Resistance and tolerance, in: “Principles and Practice of Nematode Control in Crops,” R.H. Brown and Kerry, B.R., eds., Academic Press, Sydney.Google Scholar
  13. Cramer, C.L., Weissenborn, D.L., Cottinghan, C.K., Denbow, C.J., Eisenback, J.D., Radin, D.N., and Yu, X., 1993, Regulation of defense-related gene expression during plant-pathogen interactions, J. Nematol. 25:507.PubMedGoogle Scholar
  14. Dixon, R.A., and Lamb, C.J., 1990, Molecular communication in interactions between plants and microbial pathogens, Ann. Rev. Plant Physiol. Plant Mol. Biol. 11:339.CrossRefGoogle Scholar
  15. Endo, B. Y., 1992, Cellular responses to infection, in: “Biology and management of the soybean cyst nematode,” R. D. Riggs and Wrather, J. A., eds., APS Press, St. Paul.Google Scholar
  16. Fulton, R.W., 1986, Practice and precautions in the use of cross protection for plant virus disease control, Ann. Rev. Phytopath. 24:67.CrossRefGoogle Scholar
  17. Gilbert, J.C., and McGuire, D.C., 1956, Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial type tomatoes, Proc. Am. Hort. Soc. 68:437.Google Scholar
  18. Goddjin, O.J.M., Lindsey, K., van der Lee, F.M., Klap, J.C., and Sijmons, P.C., 1993, Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs, Plant J. 4:863.CrossRefGoogle Scholar
  19. Graham, J.S., Pearce, G., Merryweathers, J., Titani, K., Ericsson, L.H., and Ryan, C.A., 1985, Wound-induced proteinase inhibitors from tomato leaves I. The cDNA-deduced primary structure of preinhibitor I and its post-translational processing, J. Biol. Chem. 260:6555.PubMedGoogle Scholar
  20. Graham, J.S., Hall, G., Pearce, G., and Ryan, C.A., 1986, Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants, Planta 169:399.CrossRefGoogle Scholar
  21. Gurr, S.J., McPherson, M.J., Scollan, C., Atkinson, H.J., and Bowles, D.J., 1991, Gene expression in nematode-infected plant roots, Mol. Gen. Genet. 226:361.PubMedCrossRefGoogle Scholar
  22. Hiatt, A., Cafferkey, R., and Bowdish, K., 1989, Production of antibodies in transgenic plants, Nature 342:76.PubMedCrossRefGoogle Scholar
  23. Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F., and Boulter, D., 1987, A novel mechanism of insect resistance engineered into tobacco, Nature 330:160.CrossRefGoogle Scholar
  24. Huang, C.S., 1985, Formation, anatomy, and physiology of giant cells induced by root-knot nematodes. in: “An Advanced Treatise on Meloidogyne. Vol. 1. Biology and Control,” J.N. Sasser and Carter, C.C., eds., North Carolina State University Graphics, Raleigh.Google Scholar
  25. Hussey, R.S., 1989, Disease-inducing secretions of plant-parasitic nematodes, Ann. Rev. Phyopath. 27:123.CrossRefGoogle Scholar
  26. Jefferson, R. A., 1987, Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387.CrossRefGoogle Scholar
  27. Johnson, R., Narvaez, J., An, G., and Ryan, C., 1989, Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae, Proc. Nat. Acad. Sci. USA 86:9871.PubMedCrossRefGoogle Scholar
  28. Jones, M.G.K., 1981, Host cell responses to endoparasitic nematode attack: Structure and function of giant cells and syncytia, Annals Appl. Biol. 97:353.CrossRefGoogle Scholar
  29. Jones, M.G.K., and Northcote, D. H., 1972, Nematode-induced syncytium-a multinucleate transfer cell, J. Cell Sci. 10:789.PubMedGoogle Scholar
  30. Keen, N.T., 1992, The molecular biology of disease resistance, Plant Mol. Biol. 19:109.PubMedCrossRefGoogle Scholar
  31. Kiraly, Z., 1980, Defenses triggered by the invader: hypersensitivity, in: “Plant Disease-An Advanced Treatise,” J.G. Horsfall and Cowling, E.B., eds., Academic Press, New York.Google Scholar
  32. Lamb, C.J., Ryals, J.A., Ward, E.R., and Dixon, R.A., 1992, Emerging strategies for enhancing crop resistance to microbial pathogens, Bio/Technology 10:1436.PubMedCrossRefGoogle Scholar
  33. Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J., and Goldberg, R. B., 1990, Induction of male sterility in plants by a chimeric ribonuclease gene, Nature 347:737–741.CrossRefGoogle Scholar
  34. Metraux, J. P., Burkhart, W., Moyer, M., Dincher, S., Middlesteadt, W., Williams, S., Payne, G., Carnes, M., and Ryals, J., 1989, Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase, Proc. Nat. Acad. Sci. USA 86:896.PubMedCrossRefGoogle Scholar
  35. Neuhaus, J.-M., Aho-Goy, P., Hinz, U., Flores, S., and Meins, F., Jr., 1991, High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospera nicotianae infection, Plant Mol. Biol. 16:141.PubMedCrossRefGoogle Scholar
  36. Niebel, A., van der Eycken, W., Inze, D., van Montagu, M., and Gheysen, G., 1992, Potato genes induced during Globodera pallida infection, Nematologica 38:426 [Abstr.].Google Scholar
  37. Niebel, A., de Almeida Engler, J., Tiré, C., Engler, G., Van Montagu, M., and Gheysen, G., 1993, Induction patterns of an extensin gene in tobacco upon nematode infection, Plant Cell 5:1697.PubMedGoogle Scholar
  38. Opperman, C.H., Taylor, C.G., and Conkling, M.A., 1994, Root-knot nematode directed expression of a plant root-specific gene, Science 263:221.PubMedCrossRefGoogle Scholar
  39. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A., 1991, A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins, Science 253:895.PubMedCrossRefGoogle Scholar
  40. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L., and Fischhoff, D.A., 1991, Modification of the coding sequence enhances plant expression of insect control protein genes, Proc. Nat. Acad. Sci. USA 88:3324.PubMedCrossRefGoogle Scholar
  41. Plunkett, G., Senear, D.F., Zuroske, G., and Ryan, C.A., 1982, Proteinase inhibitor I and II from leaves of wounded tomato plants: purification and properties, Arch. Biochem. Biophys. 213:463.PubMedCrossRefGoogle Scholar
  42. Sasser, J.N., 1980, Root-knot nematodes: A global menace to crop production, Plant Dis. 64: 36–41.CrossRefGoogle Scholar
  43. Sasser, J.N., and Freckman, D.W., 1987, A world perspective on nematology. in: “Vistas In Nematology,” D.W. Dickson and Veech, J.A., eds., Society of Nematologists, Hyattsville.Google Scholar
  44. Sijmons, P.C., 1993, Plant-nematode interactions, Plant Mol. Biol. 23:917.PubMedCrossRefGoogle Scholar
  45. Slana, L.J., and Stavely, J.R., 1981, Identification of the chromosome carrying the factor for resistance to Meloidogyne incognita in tobacco, J.Nematol. 13:61.PubMedGoogle Scholar
  46. Stirling, G. R., 1991, “Biological Control of Plant Parasitic Nematodes”, CAB International, Wollingford.Google Scholar
  47. Triantaphyllou, A.C., 1987, Genetics of nematode parasitism on plants, in: “Vistas In Nematology,” D.W. Dickson and Veech, J.A., eds., Society of Nematologists, Hyattsville.Google Scholar
  48. van der Eycken, W., Niebel, A., Inze, D., van Montagu, M., and Gheysen, G., 1992, Molecular analysis of the interaction between Meloidogyne incognita and tomato, Nematologica 38:441 [Abstr.].Google Scholar
  49. Watts, V.M., 1947, The use of Lycopersicon peruvianum as a source of nematode resistance in tomatoes, Proc. Am. Soc. Hort. Sci. 49:233.Google Scholar
  50. Wiggers, R.J., Starr, J.C., and Price, H.J., 1990, DNA content and variation in chromosome number in plant cells affected by the parasitic nematodes Meloidogyne incognita and M. arenaria, Phytopath. 80:1391.CrossRefGoogle Scholar
  51. Wilson, T.M.A., 1993, Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms, Proc. Nat. Acad. Sci. USA 90:3134.PubMedCrossRefGoogle Scholar
  52. Yamamoto, Y.T., Cheng, C.-L., and Conkling, M.A., 1990, Root-specific genes from tobacco and Arabidopsis homologous to an evolutionarily conserved gene family of membrane channel proteins, Nuc. Acids Res. 18:7449.CrossRefGoogle Scholar
  53. Yamamoto, Y.T., Taylor, C., Acedo, G.N., Cheng, C.-L., and Conkling, M.A., 1991, Characterization of cis-acting sequences regulating root-specific gene expression in tobacco, Plant Cell 3:371.PubMedGoogle Scholar
  54. Yang, Z., Park, H., Cramer, C.L., and Lacy, G.H., 1991, Differential regulation of 3-hydroxy-3-methylglutaryl CoA reductase genes by wounding and pathogen challenge, Plant Cell 3:397.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Charles H. Opperman
    • 1
    • 2
  • Gregoria N. Acedo
    • 2
  • David M. Saravitz
    • 2
  • Andrea M. Skantar
    • 1
  • Wen Song
    • 2
  • Christopher G. Taylor
    • 2
  • Mark A. Conkling
    • 1
    • 2
  1. 1.Department of Plant PathologyNorth Carolina State UniversityRaleighUSA
  2. 2.Department of GeneticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations