Perspectives for Genetically Engineered Antibodies for the Identification of Nematodes

  • Arjen Schots
  • Jaap Bakker
Part of the NATO ASI Series book series (NSSA, volume 268)


Over the past decade monoclonal antibody (MA) based immunoassays have been developed for routine identification of plant-parasitic nematode species. The information obtained from such immunoassays can be used for advisory systems with regard to crop rotation, pesticide application and certification. Initially, the development of immunoassays was hindered by difficulties with standardization and raising of specific antibodies. Standardization was mainly hampered by the complexity of the samples which usually contain soil and by difficulties with the homogenization of nematodes. Obtaining specific antibodies was impeded by the great similarities in protein composition of closely related nematode species.


Light Chain Antibody Fragment Phage Display Library Affinity Maturation Antibody Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, H.J., Harris, P.D., Halk, E.J., Novitski, C., Leighton-Sands, J., and Fox, P.C., 1988, Monoclonal antibodies to the soya bean cyst nematode, Heterodera glycines, Ann. Appl. Biol. 112:459.CrossRefGoogle Scholar
  2. Barbas III, C.F., Bain, J.D., Hoekstra, D.M., and Lerner, R.A., 1992, Semisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem, Proc. Natl. Acad. Sci. USA 89:4457.PubMedCrossRefGoogle Scholar
  3. Batra, J.K., Chaudhary, V.K., Fitzgerald, D., and Pastan, I., 1990, TGF-alpha-anti-Tac(Fv)-PE40: A bifunctional toxin cytotoxic for cells with EGF or IL2 receptors, Biochem. Biophys. Res. Comm.171:1.PubMedCrossRefGoogle Scholar
  4. Berzofsky, J.A., Hicks, G., Fedorko, J., and Minna, J., 1980, Properties of monoclonal antibodies specific for determinants on a protein antigen, myoglobin, J. Biol. Chem. 255:11188.PubMedGoogle Scholar
  5. Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H., 1988, Escherichia coli secretion of an active chimeric antibody fragment, Science 240:1041.PubMedCrossRefGoogle Scholar
  6. Chang, C.N., Landolfi, N.F., and Queen, C., 1991, Expression of antibody Fab domains on bacteriophage surfaces. Potential use of antibody selection, J. Immunol. 147:3610.PubMedGoogle Scholar
  7. Chaudhary, V.K., Gallo, M.G., Fitzgerald, D.J., and Pastan, I., 1990, A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin, Proc. Natl. Acad. Sci. USA 87:9491.PubMedCrossRefGoogle Scholar
  8. Clackson, T., Hoogenboom, H.R., Griffiths, A.D., and Winter, G., 1991, Making antibody fragments using phage display libraries, Nature 352:624.PubMedCrossRefGoogle Scholar
  9. De Neve, M., De Loose, M., Jacons, A., Van Houdt, H., Kaluza, B., Weidle, U., Van Montagu, M., and Depicker, A., 1993, Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis, Transgenic Res. 2:227.CrossRefGoogle Scholar
  10. Düring, K., 1988, Wundinduzierbare Expression und Sekretion von T4 Lysozym und monoklonalen Antikörpern in Nicotiana tabacum, PhD thesis, University of Köln.Google Scholar
  11. Düring, K., Hippe, S., Kreuzaler, F., and Schell, J., 1990, Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum, Plant Mol. Biol. 15:281.PubMedCrossRefGoogle Scholar
  12. Gram, H., Marconi, L.-A., Barbas III, C.F., Collet, T.A., Lerner, R.A., and Kang, A.S., 1992, In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library, Proc. Natl. Acad. Sci. USA 89:3576.PubMedCrossRefGoogle Scholar
  13. Hawkins, R.E., Russell, S.J., and Winter, G., 1992, Selection of phage antibodies by binding affinity. Mimicking affinity maturation, J. Mol. Biol. 226:889.PubMedCrossRefGoogle Scholar
  14. Hermes, J.D., Parekh, S.M., Blacklow, S.C., Pullen, J.K., and Pease, L.R., 1989, A reliable method for random mutagenesis: the generation of mutant libraries using spiked oligodeoxyribonucleotide primers, Gene 84:143.PubMedCrossRefGoogle Scholar
  15. Hiatt, A., Cafferkey, R., and Bowdish, K., 1989, Production of antibodies in transgenic plants, Nature 342:76.PubMedCrossRefGoogle Scholar
  16. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., and Pease, L.R., 1989, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene 77:61.PubMedCrossRefGoogle Scholar
  17. Hollander, Z., and Katchalski-Katzir, E., 1986, Use of monoclonal antibodies to detect conformational alterations in lactate dehydrogenase isoenzyme 5 on heat denaturation and on adsorption to polystyrene plates, Mol. Immunol. 23:927.PubMedCrossRefGoogle Scholar
  18. Hoogenboom, H.R., Marks, J.D., Griffiths, A.D., and Winter, G., 1992, Building antibodies from their genes, Immunol. Rev. 130:41.PubMedCrossRefGoogle Scholar
  19. Hoogenboom, H.R., and Winter, G., 1992, Bypassing hybridomas: human antibodies from synthetic repertoires of germ-line VH-gene segments rearranged in vitro, J. Mol. Biol. 227:381.CrossRefGoogle Scholar
  20. Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting, M.M., Burton, D.R., Benkovic, S.J. and Lerner, R.A., 1989, Generation of a large combinatorial library of the immunoglobulin in phage lambda, Science 246:1275.PubMedCrossRefGoogle Scholar
  21. Hussey, R.S., 1989, Monoclonal antibodies to secretory granules in esophageal glands of Meloidogyne species, J. Nematol. 21:392.PubMedGoogle Scholar
  22. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature 321:522.PubMedCrossRefGoogle Scholar
  23. Jones, P, Ambler, D.J., and Robinson, M.P., 1988, The application of monoclonal antibodies to the diagnosis of plant pathogens and pests, in: Brighton Crop Protection Conference — Pest and Diseases — 1988, vol. 2. BCPC Registered Office, Thornthon Heath, Surrey, UK.Google Scholar
  24. Kipps, T.J., 1985, Switching the isotype of monoclonal antibodies, in: “Hybridoma technology in the biosciences and medicine”. Springer T.A., ed., New York: Plenum Press.Google Scholar
  25. Knappik, A., Krebber, C., and Pliickthun, A., 1993, The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli, Bio/Technology 11:77.CrossRefGoogle Scholar
  26. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495.PubMedCrossRefGoogle Scholar
  27. Marasco, W.A., Haseltine, W.A., and Chen, S.Y. 1993 Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type-1 gp120 single chain antibody, Proc. Natl. Acad. Sci. USA 90:7889.PubMedCrossRefGoogle Scholar
  28. Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T., Bye, J.M., and Winter, G., 1992, By-passing immunization: building high affinity human antibodies by chain shuffling, Bio/Technology 10:779.PubMedCrossRefGoogle Scholar
  29. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G., 1991, Bypassing immunization; Human antibodies from V-gene libraries displayed on phage, J. Mol. Biol. 222:581.PubMedCrossRefGoogle Scholar
  30. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552.PubMedCrossRefGoogle Scholar
  31. Metzger, D.W., Ch’ng, L. -K., Miller, A., and Sercarz, E.E., 1984, The expressed lysozyme specific B-cell repertoire. I. Heterogeneity in the monoclonal anti-hen egg white lysozyme specificity repertoire, and its difference from the in situ repertoire, Eur. J. Immunol. 14:87.PubMedCrossRefGoogle Scholar
  32. Milstein, C., and Cuello, A.C., 1984, Hybrid hybridomas and the production of bi-specific monoclonal antibodies, Immunol. Today 5:299.CrossRefGoogle Scholar
  33. Orlandi, R., Gussow, D.H., Jones, P.T., and Winter, G., 1989, Cloning immunoglobulin variable domains for expression by the polymerase chain reaction, Proc. Natl. Acad. Sci. USA 86:3833.PubMedCrossRefGoogle Scholar
  34. Owen, M., Gandecha, A., Cockburn, B., and Whitelam, G. 1992, Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco, Bio/Technology 10:790.PubMedCrossRefGoogle Scholar
  35. Schots, A., Hermsen, T., Schouten S., Gommers, F.J., and Egberts, E., 1989, Serological differentiation of the potato-cyst nematodes Globodera pallida and G. rostochiensis. II. Preparation and characterization of species specific monoclonal antibodies, Hybridoma 8:401.PubMedCrossRefGoogle Scholar
  36. Schots, A., De Boer, J., Schouten, A., Roosien, J., Zilverentant, J.F., Pomp, H., Bouwman-Smits, L., Overmars, H., Gommers, F.J., Visser, B., Stiekema, W.J. and Bakker, J., 1992, ‘Plantibodies’: a flexible approach to endow plants with new properties, Neth. J. Pl. Pathol. 98, supplement 2:183.CrossRefGoogle Scholar
  37. Skerra, A., and Pliickthun, A., 1988, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science 240:1038.Google Scholar
  38. Söderlind, E., Simonsson Lagerkvist, A.C., Dueñas, M., Malmborg, A.-C., Ayala, M., Danielsson, L., and Borrebaeck, C.A.K., 1993, Chaperonin assisted phage display of antibody fragments on filamentous bacteriophages, Bio/Technology 11:503.PubMedCrossRefGoogle Scholar
  39. Tang, Y., Hicks, J.B., and Hilvert, D. 1991 in vivo catalysis of a metabolically essential reaction by an antibody, Proc. Natl. Acad. Sci. USA 82:1074.Google Scholar
  40. Winter, G. and Milstein, C., 1991, Man-made antibodies, Nature 349:293.PubMedCrossRefGoogle Scholar
  41. Waterhouse, P., Griffiths, A.D., Johnson, K.S., and Winter, G., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucl. Ac. Res. 21:2265.CrossRefGoogle Scholar
  42. Wu, X.-C., Ng, S.-C., Near, R.I., and Wong, S.-L., 1993, Efficient production of a functional single-chain antibody via an engineered Bacillus subtilis expression-secretion system, Bio/technology 11:71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Arjen Schots
    • 1
  • Jaap Bakker
    • 2
  1. 1.Laboratory for Monoclonal AntibodiesWageningenThe Netherlands
  2. 2.Department of NematologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations