Advertisement

The Caenorhabditis Elegans Genome Project

  • Sean R. Eddy
Part of the NATO ASI Series book series (NSSA, volume 268)

Abstract

In the next five years, molecular biology will get its first look at the complete genetic code of a multicellular animal. The Caenorhabditis elegans genome sequencing project, a collaboration between Robert Waterston’s group in St. Louis and John Sulston’s group in Cambridge, is currently on schedule towards its goal of obtaining the complete sequence of this organism and all its estimated 15,000 to 20,000 genes by 1998 (Sulston et al., 1992). By that time, we should also know the complete genome sequence of a few other organisms as well, including the prokaryote Escherichia coli (Daniels et al., 1992; Plunkett et al., 1993) and the single-celled eukaryote Saccharomyces cerevisiae (Oliveret al, 1992).

Keywords

Neural Cell Adhesion Molecule Yeast Artificial Chromosome Sequence Family Yeast Artificial Chromosome Clone Secondary Structure Consensus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., 1990, Basic local alignment search tool, J. Mol. Biol. 215:403.PubMedGoogle Scholar
  2. Bairoch, A. and Boeckmann, B., 1993, The SWISS-PROT protein sequence data bank, recent developments, Nucl. Acids Res. 21: 3093.PubMedCrossRefGoogle Scholar
  3. Barker, W. C., George, D. G., Mewes, H.-W., Pfeiffer, F., and Tsugita, A, 1993, The PIR-international databases, Nuci Acids Res. 21:3089.CrossRefGoogle Scholar
  4. Barton, G. J., 1990, Protein multiple sequence alignment and flexible pattern matching, Meth. Enzy-mol. 183:403.CrossRefGoogle Scholar
  5. Bellen, H. J., O’Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K., and Gehring, W. J., 1989, P-element-mediated enhancer detection: a versatile method to study development in Drosophila, Genes Dev. 3:1288.PubMedCrossRefGoogle Scholar
  6. Benson, D., Lipman, D. J., and Ostell, J., 1993, GenBank, Nuci Acids Res. 21:2963.CrossRefGoogle Scholar
  7. Bier, E., Vaessin, H., Shepherd, S., Lee, K., McCall, K., Barbel, S., Ackerman, L., Carretto, R., Uemura, T., Grell, E., Jan, L. Y., and Jan, Y. N., 1989, Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector, Genes Dev. 3:1273.PubMedCrossRefGoogle Scholar
  8. Bixby, J. L. and Harris, W. A., 1991, Molecular mechanisms of axon growth and guidance, Ann. Rev. Cell Biol. 7:117.PubMedCrossRefGoogle Scholar
  9. Bork, P., Ouzounis, C., Sander, C., Scharf, M., Schneider, R., and Sonnhammer, E., 1992, Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III, Protein Science 1:1677.PubMedCrossRefGoogle Scholar
  10. Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77:71.PubMedGoogle Scholar
  11. Burglin, T., Ruvkun, G., Coulson, A., Hawkins, N., McGhee, J., Schaller, D., Wittmann, C., Muller, F., and Waterston, R., 1991, Nematode homeobox cluster, Nature 351:703.PubMedCrossRefGoogle Scholar
  12. Chalfie, M., 1993, Homeobox genes in Caenorhabditis elegans, Curr. Opin. Genet. Dev. 3:275.PubMedCrossRefGoogle Scholar
  13. Collins, J., Forbes, E., and Anderson, P., 1989, The Tc3 family of transposable genetic elements in Caenorhabditis elegans, Genetics 121:47.PubMedGoogle Scholar
  14. Coulson, A., Kozono, Y., Lutterbach, B., Shownkeen, R., Sulston, J., and Waterston, R., 1991, YACs and the C. elegans genome, BioEssays 13:413.PubMedCrossRefGoogle Scholar
  15. Coulson, A., Sulston, J., Brenner, S., and Kam, J., 1986, Toward a physical map of the genome of the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 83:7821.PubMedCrossRefGoogle Scholar
  16. Coulson, A., Waterston, R., Kiff, J., Sulston, J., and Kohara, Y., 1988, Genome linking with yeast artificial chromosomes, Nature 335:184.PubMedCrossRefGoogle Scholar
  17. Daniels, D. L., Plunkett, G., Burland, V., and Blattner, F. R., 1992, Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes, Science 257:771.PubMedCrossRefGoogle Scholar
  18. Dear, S. and Staden, R., 1991, A sequence assembly and editing program for efficient management of large projects, Nucl. Acids Res. 19:3907.PubMedCrossRefGoogle Scholar
  19. Dreyfus, D. H. and Emmons, S. W., 1991, A transposon-related palindromic repetitive sequence from C elegans, Nucl. Acids Res. 19:1871.PubMedCrossRefGoogle Scholar
  20. Eddy, S. R. and Durbin, R., 1993, Analysis of RNA sequence families using adaptive statistical models, unpublished manuscript.Google Scholar
  21. Green, P., Lipman, D., Hillier, L., Waterston, R., States, D., and Claverie, J.-M., 1993, Ancient conserved regions in new gene sequences and the protein databases, Science 259:1711.PubMedCrossRefGoogle Scholar
  22. Gribskov, M., Luthy, R., and Eisenberg, D., 1990, Profile analysis, Meth. Enzymol. 183:146.PubMedCrossRefGoogle Scholar
  23. Hedgecock, E. M., Culotti, J. G., and Hall, D. H., 1990, The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans, Neuron 4:61.PubMedCrossRefGoogle Scholar
  24. Hedgecock, E. M., Culotti, J. G., Hall, D. H., and Stern, B. D., 1987, Genetics of cell and axon migrations in Caenorhabditis elegans, Development 100:365.PubMedGoogle Scholar
  25. Hope, I., 1991, ‘Promoter trapping’ in Caenorhabditis elegans, Development 113:399.Google Scholar
  26. Hynes, R. O. and Lander, A. D., 1992, Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons, Cell 68:303.PubMedCrossRefGoogle Scholar
  27. Kenyon, C. and Wang, B., 1991, A cluster of antennapedia-class homeobox genes in a nonsegmented animal, Science 253:516.PubMedCrossRefGoogle Scholar
  28. Knoll, A. H., 1992, The early evolution of eukaryotes: a geological perspective, Science 256:622.PubMedCrossRefGoogle Scholar
  29. Krogh, A., Brown, M., Mian, I., Sjolander, K., and Haussler, D., 1993, Hidden Markov models in computational biology: applications to protein modeling, unpublished manuscript.Google Scholar
  30. Levitt, A. and Emmons, S. W., 1989, The Tc2 transposon in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 86:3232.PubMedCrossRefGoogle Scholar
  31. McCombie, W. R., Adams, M. D., Kelly, J. M., Fitzgerald, M. G., Utterback, T. R., Khan, M., Dubnick, M., Kerlavage, A. R., Venter, J. C., and Fields, C., 1992, Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues, Nature Genet. 1:124.PubMedCrossRefGoogle Scholar
  32. Oliver, S., van der Aart, Q., Agostoni-Carbone, M., Aigle, M., et al., 1992, The complete DNA sequence of yeast chromosome III, Nature 357:38.PubMedCrossRefGoogle Scholar
  33. Plasterk, R. H., 1992, Reverse genetics of Caenorhabditis elegans, BioEssays 14:629.PubMedCrossRefGoogle Scholar
  34. Plunkett, G., Burland, V., Daniels, D. L., and Blattner, F. R., 1993, Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes, Nucl. Acids Res. 21:3391.PubMedCrossRefGoogle Scholar
  35. Rice, C. M., Fuchs, R., Higgins, D. G., Stoehr, P. J., and Cameron, G. N., 1993, The EMBL data library, Nucl. Acids Res. 21:2967.PubMedCrossRefGoogle Scholar
  36. Robertson, H. M., 1993, The mariner transposable element is widespread in insects, Nature 362:241.PubMedCrossRefGoogle Scholar
  37. Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C., and Haussler, D., 1993, The application of stochastic context-free grammars to folding, aligning and modeling homologous RNA sequences, unpublished manuscript.Google Scholar
  38. Searls, D. B., 1992, The linguistics of DNA, American Scientist 80:579.Google Scholar
  39. Singer, M. and Berg, P., 1991, Genes and Genomes, University Science Books, Mill Valley, CA.Google Scholar
  40. Smith, T. and Waterman, M., 1981, Identification of common molecular subsequences, J. Mol. Biol 147:195.PubMedCrossRefGoogle Scholar
  41. Sonnhammer, E. L. and Durbin, R., 1993, A workbench for large-scale sequence homology analysis, unpublished manuscript.Google Scholar
  42. Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R., and Waterston, R., 1992, The C. elegans genome sequencing project: a beginning, Nature 356:37.PubMedCrossRefGoogle Scholar
  43. Sulston, J., Schierenberg, E., White, J., and Thomson, J., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Devel. Biol. 100:64.CrossRefGoogle Scholar
  44. Wadsworth, W. G. and Hedgecock, E. M., 1992, Guidance of neuroblast migrations and axonal projections in Caenorhabditis elegans, Curr. Opinion Neuro. 2:36.CrossRefGoogle Scholar
  45. Wang, B. B., Muller-Immergluck, M. M., Austin, J., Robinson, N. T., Chisholm, A., and Kenyon, C., 1993, A homeotic gene cluster patterns the anteroposterior body axis of C. elegans, Cell 74:29.PubMedCrossRefGoogle Scholar
  46. Waterston, R., Martin, C., Craxton, M., Hunyh, C., Coulson, A., Hillier, L., Durbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J., and Sulston, J., 1992, A survey of expressed genes in Caenorhabditis elegans, Nature Genet. 1:114.PubMedCrossRefGoogle Scholar
  47. Watson, A., Smaldon, N., Lucke, R., and Hawkins, T., 1993, The Caenorhabditis elegans genome sequencing project: first steps in automation, Nature 362:569.PubMedCrossRefGoogle Scholar
  48. White, J., Southgate, E., Thomson, J., and Brenner, S., 1986, The structure of the nervous system of the nematode Caenorhabditis elegans, Phil. Trans. R. Soc. Lond. 314:1.CrossRefGoogle Scholar
  49. Wilson, C., Pearson, R. K., Bellen, H. J., O’Kane, C. J., Grossniklaus, U., and Gehring, W. J., 1989, P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila, Genes Dev. 3:1301.PubMedCrossRefGoogle Scholar
  50. Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., et al., 1993, The C. elegans genome project: nucleotide sequence of over two megabases from chromosome III, unpublished manuscript.Google Scholar
  51. Wood, W. B., ed., 1988, The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory, New York, NY.Google Scholar
  52. Yuan, J., Finney, M., Tsung, N., and Horvitz, H. R., 1991, Tc4, a Caenorhabditis elegans transposable element with an unusual foldback structure, Proc. Natl. Acad. Sci. USA 88:3334.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Sean R. Eddy
    • 1
  1. 1.MRC Laboratory of Molecular BiologyCambridgeEngland

Personalised recommendations