Skip to main content

Temporal Correlation in Phrenic Neural Activity

  • Chapter
Book cover Advances in Modeling and Control of Ventilation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 450))

Abstract

Neural activity which gives rise to eupnea fluctuates in a complex manner. Apparently “noisy” variations in activity of the phrenic nerve may display a fractal scaling relationship. Fractal scaling in eupnea is the consequence of physical and chemical processes acting over short time scales at the cellular level, and which are correlated with similar processes acting simultaneously over longer time scales. Specifically, variations in phrenic neural bursts may not be independent random fluctuations or entirely due to short-range influences4, but may exhibit temporal correlation indicative of fractal scaling. West and Deering20 have demonstrated that fractal processes are essentially unresponsive to error and very tolerant of variability in the physiological environment. In this view, eupnea with its concomitant stability to error from a broad spectrum of inputs must have the error-tolerant properties of fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West, Fractal Physiology. New York: Oxford, 1994.

    Book  Google Scholar 

  2. Beagle, J. L., B. Hoop, and H. Kazemi. Phrenic nerve response to glutamate antagonist microinjection in the ventral medulla. In: Advances in Control and Modeling of Ventilation, edited by R. Hughson, D. A. Cunningham, and J. Duffin., New York: Plenum, 1998, (this volume).

    Google Scholar 

  3. Bianchi, A. L., M. Denavit-Saubie, and J. Champagnat. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 75, 1–45, 1995.

    PubMed  CAS  Google Scholar 

  4. Bruce, E. N. Temporal variations in the pattern of breathing. J. Appl. Physiol. 80: 1079–1087, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Donaldson, G. C. The chaotic behavior of resting human respiration. Respir. Physiol. 88: 313–321, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Feder, J. Fractals. New York: Plenum, 1988, pp. 180–181.

    Google Scholar 

  7. Flandrin, P. On the spectrum of fractional Brownian motions. IEEE Trans. Infor. Theor. 35: 197–199, 1989.

    Article  Google Scholar 

  8. Hausdorff, J. M., C. -K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78: 349–358, 1995.

    PubMed  CAS  Google Scholar 

  9. Hausdorff, J. M., and C. -K. Peng. Multi-scaled randomness: a source of l/f noise in biology. Physical Review E 54: 2154–2157, 1996.

    Article  CAS  Google Scholar 

  10. Hoop, B., M. D. Burton, H. Kazemi, and L. S. Liebovitch. Correlation in stimulated respiratory neural noise. CHAOS 5: 609–612, 1995.

    Article  PubMed  Google Scholar 

  11. Hoop, B., M. D. Burton, and H. Kazemi. Fractal noise in breathing. In: Bioengineering Approaches to Pulmonary Physiology and Medicine, edited by M. C. K. Khoo, New York: Plenum, 1996, pp. 161–173.

    Chapter  Google Scholar 

  12. Hughson, R. L., Y. Yamamoto, J. -O. Fortrat, R. Leask, and M. S. Fofana. Possible fractal and/or chaotic breathing patterns in resting humans. In: Bioengineering Approaches to Pulmonary Physiology and Medicine, edited by M. C. K. Khoo, New York: Plenum, 1996, pp. 187–196.

    Chapter  Google Scholar 

  13. Peng, C. -K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary hearbeat time series. CHAOS 5: 82–87, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Sammon, M., J. R. Romaniuk, and E. N. Bruce. Bifurcations of the respiratory pattern produced with phasic vagal stimulation in the rat. J. Appl. Physiol. 75: 912–926, 1993.

    PubMed  CAS  Google Scholar 

  15. Schepers, H. E., J. H. G. M van Beek, and J. B. Bassingthwaighte. Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med Biol Mag. 11 (2): 57–64, 71, 1992.

    Article  Google Scholar 

  16. Szeto, H. H, P. Y. Cheng, J. A. Decena, Y. Cheng, D. Wu, and G. Dwyer. Fractal properties in fetal breathing dynamics. Am. J. Physiol. 263: R141–R147, 1992.

    Google Scholar 

  17. Tuck, S. A., Y. Yamamoto, and R. L. Hughson. The effects of hypoxia and hyperoxia on the 1/f nature of breath-by-breath ventilatory variability. In: Modelling and Control of Ventilation, edited by S. J. G. Semple and L. Adams. New York: Plenum, 1995, pp. 297–302.

    Chapter  Google Scholar 

  18. Viswanathan, G. M, C. -K. Peng, H. E. Stanley, and A. L. Goldberger. Deviations from uniform power law scaling in nonstationary time series. Physical Review E 55: 845–849, 1997.

    Article  CAS  Google Scholar 

  19. Voss, R. F. Random fractal forgeries. In: Fundamental Algorithms in Computer Graphics, edited by R. A. Earnshaw, Berlin: Springer, pp. 805–835, 1985.

    Chapter  Google Scholar 

  20. West, B. J. and W. Deering. Fractal physiology for physicists: Levy Statistics. Physics Reports 246: 2–100, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoop, B., Krause, W.L., Kazemi, H. (1998). Temporal Correlation in Phrenic Neural Activity. In: Hughson, R.L., Cunningham, D.A., Duffin, J. (eds) Advances in Modeling and Control of Ventilation. Advances in Experimental Medicine and Biology, vol 450. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9077-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9077-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9079-5

  • Online ISBN: 978-1-4757-9077-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics