Advertisement

Ecology and Biogeochemistry of in Situ Groundwater Bioremediation

  • Robert T. Anderson
  • Derek R. Lovley
Part of the Advances in Microbial Ecology book series (AMIE, volume 15)

Abstract

The activity of microorganisms has a significant impact on the chemical composition of groundwaters (Chapelle, 1993). Microbial processes in both shallow (Madsen, 1995) and deep (Lovley and Chapelle, 1995) pristine aquifers have recently been reviewed in detail. The purpose of this chapter is to summarize recent research on the microbial ecology and biogeochemistry of contaminated aquifers.

Keywords

Pseudomonas Putida Landfill Leachate Aquifer Sediment Pseudomonas Stutzeri Benzene Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamand, J., Jorgensen, C., Arvin, E., and Jensen, B. K., 1989, Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater, J. Contam. Hvdrol. 4: 299–312.CrossRefGoogle Scholar
  2. Acton, D. W., and Barker, J. F., 1992, In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters, J. Contam. Hvdrol. 9: 325–352.CrossRefGoogle Scholar
  3. Adriaens, P., Kohler, H.-P. E., Kohler-Staub, D., and Focht, D. D., 1989, Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4’-dichlorobiphenyl, Appl. Environ. Microbial. 55: 887–892.Google Scholar
  4. Ahmann, D., Roberts, A. L., Krumholtz, L. R. and Morel, F. M. M., 1994, Microbe grows by reducing arsenic, Nature 317: 750.CrossRefGoogle Scholar
  5. Al-Bashir, B., Cseh, T., Leduc, R., and Samson, R., 1990, Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions, Appl. Microbial. Biotechnol. 34: 414–419.CrossRefGoogle Scholar
  6. Alexander, M., 1994, Biodegradation and Bioremediation, Academic Press, London.Google Scholar
  7. Altenschmidt, U., and Fuchs, G., 1991, Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-co A as central intermediate, Arch. Microhiol. 156: 152–158.CrossRefGoogle Scholar
  8. Alvarez, P. J. J., and Vogel, T. M., 1991, Substrate interactions of benzene, toluene and para-xylene during microbial degradation by pure cultures and mixed culture aquifers slurries, Appl. Environ. Microbial. 57: 2981–2985.Google Scholar
  9. Anderson, R. T., Caw, C. V., and Lovley, D. R., 1997, Benzene oxidation in the Fe(III) reduction zone of a petroleum-contaminated aquifer, Environ. Sci. Technol. submitted.Google Scholar
  10. Anid, P. J., Alvarez, P. J. J., and Vogel, T. M., 1993, Biodegradation of monoaromatic hyrocarbons in aquifer columns amended with hydrogen peroxide and nitrate, Water Res. 27: 685–691.CrossRefGoogle Scholar
  11. Armstrong, A. Q., Hodson, R. E., Hwang, H.-M., and Lewis, D. L., 1991, Environmental factors affecting toluene degradation in ground water at a hazardous waste site, Environ. Toxicol. Chem. 10: 147–158.CrossRefGoogle Scholar
  12. Aronstein, B. N., Calvillo, Y. M., and Alexander, M., 1991, Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil, Environ. Sci. Technol. 25: 1728–1731.CrossRefGoogle Scholar
  13. Arvin, E., Jensen, B., Aamand, J., and Jorgensen, C., 1988, The potential of free-living ground water bacteria to degrade aromatic hydrocarbons and heterocyclic compounds, Wat. Sci. Tech. 20: 109–118.Google Scholar
  14. Arvin, E., Jensen, B. K., and Gundersen, A. T., 1989, Substrate interactions during aerobic biodegradation of benzene, Appl. Environ. Microbiol. 55: 3221–3225.PubMedGoogle Scholar
  15. Baedecker, M. J., and Back, W., 1979, Hydrogeological processes and chemical reactions at a landfill, Ground Water 17: 429–437.CrossRefGoogle Scholar
  16. Baedecker, M. J., Siegel, D. I., Bennett, P., and Cozzarelli, I. M., 1989, The fate and effects of crude oil in a shallow aquifer I. The distribution of chemical species and geochemical facies, in: U. S. Geological Survey Water Resources Division Report 88–4220, (G. E. Mallard and S. E. Ragone, eds., U. S. Geological Survey, Reston, VA., pp. 13–20.Google Scholar
  17. Baedecker, M. J., Cozzarelli, I. M., Siegel, D. I., Bennett, P. C., and Eganhouse, R. P., 1993, Crude oil in a shallow sand and gravel aquifer: 3. Biogeochemical reactions and mass balance modeling in anoxic ground water, Appl. Geochem. 8: 569–586.CrossRefGoogle Scholar
  18. Bagley, D. M., and Gossett, J. M., 1990, Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures, Appl. Environ. Microbiol. 56: 2511–2516.PubMedGoogle Scholar
  19. Baker, K. H., and Herson, D. S., 1990, In situ bioremediation of contaminated aquifers and subsurface soils, Geomicrobiology Journal 8: 133–146.CrossRefGoogle Scholar
  20. Baldi, F., Semplici, F., and Filippelli, M., 1991, Environmental applications of mercury resistant bacteria, Water, Air, Soil Pollut. 56: 465–475.CrossRefGoogle Scholar
  21. Baldi, F., Boudou, A., and Ribeyre, F., 1992, Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgC1) in a controlled system, Arch. Environ. Contam. Toxicol. 22: 439–444.CrossRefGoogle Scholar
  22. Balkwill, D. L., 1989, Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina, Geo-microbio!. J. 7: 33–52.Google Scholar
  23. Balkwill, D. L., and Ghiorse, W. C., 1985, Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma, Appl. Environ. Microbiol. 50: 580–588.PubMedGoogle Scholar
  24. Balkwill, D. L., Frederickson, J. K., and Thomas, J. M., 1989, Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments, Appl. Environ. Microbiol. 55: 1058–1065.PubMedGoogle Scholar
  25. Barbaro, J. R., Barker, J. F., Lemon, L. A., and Mayfield, C. I., 1992, Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations, J. Contam. Hydrol. 11: 245–272.CrossRefGoogle Scholar
  26. Barcelona, M. J., and Holm, T. R., 1991, Oxidation-reduction capacities of aquifers solids, Environ. Sci. Technol. 25: 1565–1572.CrossRefGoogle Scholar
  27. Barkay, T., 1987, Adaptation of aquatic microbial communities to Hg2+ stress, Appl. Environ. Microbio!. 53: 2725–2732.Google Scholar
  28. Barkay, T., and Olson, B. H., 1986, Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress, Appl. Environ. Microbiol. 52: 403–406.PubMedGoogle Scholar
  29. Barkay, T., Liebert, C., and Gillman, M., 1989a, Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg° in natural waters, Appl. Environ. Microbiol. 55: 1196–1202.PubMedGoogle Scholar
  30. Barkay, T., Liebert, C., and Gillman, M., 1989b, Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance, Appl. Environ. Microbiol. 55: 1574–1577.PubMedGoogle Scholar
  31. Barkay, T., Turner, R. R., VandenBrook, A., and Liebert, C., 1991, The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community, Microh. Ecol. 21: 151–16I.CrossRefGoogle Scholar
  32. Barker, J. F.. Patrick, G. C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer, Ground Water Monitoring Review, 7: 64–71.Google Scholar
  33. Barrio-Loge, G. A., Parsons, F. Z., Narbaitz. R. M., and Lorenzo, P. A., 1990, Enhanced anaerobic biodegradation of vinyl chloride in ground water. Environ. Toricol. Chem. 9: 430–415.Google Scholar
  34. Beeman, R. E., and Suflita, J. M., 1987, Microbial ecology of a shallow unconfined groundwater aquifer polluted by municipal landfill leachate, Microb. Ecol. 14: 39–54.CrossRefGoogle Scholar
  35. Beeman. R. E., Howell, J. E., Shoemaker, S. H., Salazar, E. A., and Buttram, J. R., 1994 ) A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes, in Bioremediation of Chlorinated and Polvcvlic Aromatic Hydrocarbon Compounds, (Hinchee, R. E.. Leeson. A.. Semprini, L., and Ong, S. K. eds., Lewis Publishers, Boca Raton, pp. 14–27.Google Scholar
  36. Beller, H. R., Grbic-Galic, D., and Reinhard. M., 1992, Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process, Appl. Environ. Microbiol. 58: 786–793.PubMedGoogle Scholar
  37. Beloin, R. M., Sinclair, J. L., and Ghiorse. W. C., 1988, Distribution and activity of microorganisms in subsurface sediments of a pristine site in Oklahoma. Microbial Ecology 16: 85–97.CrossRefGoogle Scholar
  38. Bengtsson, G., 1989, Growth and metabolic flexibility in groundwater bacteria, Microb. Ecol. 18: 235–248.CrossRefGoogle Scholar
  39. Bengtsson. G., and Annadotter. H., 1989, Nitrate reduction in a groundwater microcosm determined by ‘5N gas chromatography-mass spectrometry, Appl. Environ. Microb. 55: 2861–2870.Google Scholar
  40. Bengtsson, G., and Bergwall, C., 1995, Heterotrophic denitrification potential as an adaptive response in groundwater bacteria, FEMS Microbial. Ecol. 16: 307–318.CrossRefGoogle Scholar
  41. Bennett, J. L., Updegralf, J. M., Pereira, W. E., and Rostad, C. E., 1985, Isolation and degradation of four species of quinoline-degrading Pseudomonas from a creosote-contaminated site at Pensacola, Florida, Microbios Leit. 29: 147–154.Google Scholar
  42. Bianchi-Mosquera, G. C., Allen-King, R. M., and Mackay, D. M.. 1994, Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound. Ground Water Monitoring Review, 14: 120–128.Google Scholar
  43. Bjerg, P. L., Rugge, K.. Pedersen, J. K.. and Christensen, T. H., 1995, Distribution of redoxsensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark, Environ. Sci. Technol. 29: 1387–1394.PubMedCrossRefGoogle Scholar
  44. Bone, T. L., and Balkwill, D. L., 1988, Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma, Microbial Ecology 16: 49–64.CrossRefGoogle Scholar
  45. Bopp, L. H., and Ehrlich, H. L., 1988, Chromate resistance and reduction in Pseudomonas fluore.scens strain LB300, Arch. Microbiol. 150: 426–431.CrossRefGoogle Scholar
  46. Borden, R. C., Gomez, C. A., and Becker, M. T., 1995, Geochemical indicators of intrinsic bioremediation. Ground Water 33: 180–189.CrossRefGoogle Scholar
  47. Bottcher, J., Strebel, O., Voerkelius, S., and Schmidt, H. L., 1990, Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hvdrol. 114: 413–424.CrossRefGoogle Scholar
  48. Bouwer, E. J., 1992, Bioremediation of organic contaminants in the subsurface, in: Environmental Microbiology ( R. Mitchell, ed.), John Wiley, New York, pp. 287–318.Google Scholar
  49. Bouwer, E. J., and McCarty, P. L., 1983, Transformation of halogenated organic compounds under denitrification conditions, Appl. Environ. Microbiol. 45: 1295–1299.PubMedGoogle Scholar
  50. Bouwer, E. J., and Zehnder, A. J. B., 1993, Bioremediation of organic compounds—putting microbial metabolism to work, TIBTECH 11: 360–367.CrossRefGoogle Scholar
  51. Bouwer, E., Durant, N., Wilson, L., Zhang, W., and Cunningham, A., 1994, Degradation of xenobiotic compounds in situ: capabilities and limits, FEMS Microbiol. Rev. 15: 307–317.PubMedCrossRefGoogle Scholar
  52. Bowman, J. P., Jimenez, L., Rosario, I., Hazen, T. C., and Sayler, G. S., 1993, Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site, Appl. Environ. Microbiol. 59: 2380–2387.PubMedGoogle Scholar
  53. Bradley, P. M., Aelion, C. M., and Vroblesky, D. A., 1992, Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel, Ground Water 30: 843–848.CrossRefGoogle Scholar
  54. Braester, C., and Martinell, R., 1988, The vyredox and nitredox methods of in situ treatment of groundwater, Wat. Sci. Tech. 20: 149–163.Google Scholar
  55. Brockman, F. J., Denovan, B. A., Hicks, R. J., and Frederickson, J. K., 1989, Isolation and characterization of quinoline-degrading bacteria from subsurface sediments, Appl. Environ. Microbiol. 55: 1029–1032.PubMedGoogle Scholar
  56. Brown, R. A., and Crosbie, J. R., 1994, Oxygen sources for in situ bioremediation, in: Bioremediation Field Experience (E. P. Flathman, E. D. Jerger, and H. J. Exner, eds., Lewis Publishers, Boca Raton, pp. 311–332.Google Scholar
  57. Brown, R. A., Norris, R. D., and Raymond, R. L., 1984, Oxygen transport in contaminated aquifiers with hydrogen peroxide. Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, National Water Well Association, Worthington, OH, pp. 441–450.Google Scholar
  58. Brunner, W., Staub, D., and Leisinger, T., 1980, Bacterial degradation of dichloroethane, Appl. Environ. Microbiol., 40: 950–958.Google Scholar
  59. Buchanan-Mappin, J. M., Wallis, P. M., and Buchanan, A. G., 1985. Enumeration and identification of heterotrophic bacteria in groundwater and in a mountain stream, Can. J. Microbial. 32: 93–98.CrossRefGoogle Scholar
  60. Caccavo, F., Jr., Blakemore, R. P., and Lovley, D. R., 1992, A hydrogen-oxidizing, Fe(III)reducing microorganism from the Great Bay Estuary, New Hampshire, Appl. Environ. Microbiol. 58:3211–3216.Google Scholar
  61. Caccavo, F., Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., and McInerney, M. J., 1994, Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol. 60: 3752–3759.Google Scholar
  62. Cerniglia, C., E., 1992, Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation 3: 351–368.CrossRefGoogle Scholar
  63. Champ, D. R., Gulens, J., and Jackson, R. E., 1979, Oxidation-reduction sequences in ground water flow systems, Can. J. Earth Sci. 16: 12–23.CrossRefGoogle Scholar
  64. Chang, M.-K., Voice, T. C., and Criddle, C. S., 1993, Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates, Biotechnol. Bioeng. 41: 1057–1065.CrossRefGoogle Scholar
  65. Chapelle, F. H., 1993, Ground-water Microbiology and Geochemistry, John Wiley, New York. Chapelle, F. H., and Lovley, D. R., 1990, Rates of microbial metabolism in deep coastal plain aquifers, Appl. Environ. Microbiol. 56: 1865–1874.Google Scholar
  66. Chapelle, F. H., and Lovley, D. R., 1992, Competitive exclusion of sulfate reduction by Fe(1II)reducing bacteria: a mechanism for producing discrete zones of high-iron ground water, Ground Water 30: 29–36.CrossRefGoogle Scholar
  67. Chapelle, F. H., McMahon, P. B., Dubrovsky, N. M., Fujii, R. F., Oaksford, E. T., and Vroblesky, D. A., 1995, Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems, Water Resour. Res. 31: 359–371.CrossRefGoogle Scholar
  68. Chapelle, F. H., Bradley, P. M., Vroblesky, D. A., and Lovley, D. R., 1996, Measuring rates of biodegradation in a petroleum hydrocarbon-contaminated aquifer, Ground Water, 34: 691–698.CrossRefGoogle Scholar
  69. Christensen, T., H., Kjeldsen, P., Albrechtsen, H.-J., and Heron, G., 1994, Attenuation of pollutants in landfill leachate polluted aquifers, Critical Reviews in Environ. Sci. Technol. 24: 119–202.CrossRefGoogle Scholar
  70. Coates, J. D., Anderson, R. T., Woodward, J. C., Phillips, E. J. P., and Lovley, D. R., 1996a, Anaerobic hydrocarbon degradation in petroleum contaminated harbor sediments under sulfate-and artificially imposed iron-reducing conditions, Environ. Sci. Technol., 30: 2784–2789.CrossRefGoogle Scholar
  71. Coates, J. D., Lonergan, D. J., Jenter, H., and Lovley, D. R., 19966, Isolation of Geobacter species from a variety of sedimentary environments, Appl. Environ. Microbiol. 62: 1531–1536.Google Scholar
  72. Cole, J., 1993, Controlling environmental nitrogen through microbial metabolism, Trends Biotechnol. 11: 368–372.PubMedCrossRefGoogle Scholar
  73. Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C., and Pye, K., 1993, Reduction of Fe(III) in sediments by sulphate-reducing bacteria, Nature 361: 436–438.CrossRefGoogle Scholar
  74. Colwell, F. S., 1989, Microbiological comparison of surface soil and unsaturated subsurface soil from a semiarid high desert, Appl. Environ. Microbiol. 55: 2420–2423.PubMedGoogle Scholar
  75. Cord-Ruwisch, R., Seitz, H., and Conrad, R., 1988, The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Arch. Microbiol. 149: 350–357.CrossRefGoogle Scholar
  76. Corseuil, H. X., and Weber, W. J. J., 1994, Potential biomass limitations on rates of degradation of monoaromatic hydrocarbons by indigenous microbes in subsurface soils, Wat. Res. 28: 1415–1423.CrossRefGoogle Scholar
  77. Criddle, C. S., DeWitt, J. T., Grbic-Galic, D., and McCarty, P., 1990, Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions, Appl. Environ. Microbiol. 56: 3240–3246.PubMedGoogle Scholar
  78. Crocetti, C. A., Head, C. L., and Ricciardelli, A. J., 1992, Aeration-enhanced bioremediation of oil-contaminated soils: A laboratory treatability study, in: Proceedings of the Conference entitled Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, Houston, pp. 427–440.Google Scholar
  79. Dagley, S., 1971, Catabolism of aromatic compounds by microorganisms, Adv. Microb. Physiol. 6: 1–46.PubMedCrossRefGoogle Scholar
  80. Dahab, M. F., 1993, Comparison and evaluation of in-situ bio-denitrification systems for nitrate reduction in groundwater, Wat. Sci. Tech. 28: 359–368.Google Scholar
  81. Davis, J. W., Klier, N. J., and Carpenter, C. L., 1994, Natural biological attenuation of benzene in ground water beneath a manufacturing facility, Ground Water 32: 215–226.CrossRefGoogle Scholar
  82. De Bruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B., 1992, Complete biological reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol. 58: 1996–2000.PubMedGoogle Scholar
  83. Dobbins, D. C., Aelion, C. M., and Pfaender, F., 1992, Subsurface terrestial microbial ecology and biodegradation of organic chemicals: a review, Critical Reviews in Environmental Control 22: 67–136.CrossRefGoogle Scholar
  84. Doffing, J., Zeyer, J., Binder-Eicher, P., and Schwarzenbach, R. P., 1990, Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen, Arch Microbiol. 134: 336–341.Google Scholar
  85. Durant, N. D., Wilson, L. P., and Bouwer, E. J., 1995, Microcosm studies of subsurface PAHdegrading bacteria from a former manufactured gas plant, J. Contam. Hydro!. 17: 213–237.CrossRefGoogle Scholar
  86. Edwards, E. A., and Grbic-Galic, D., 1992, Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions, Appl. Environ. Microbio!. 58: 2663–2666.Google Scholar
  87. Edwards, E. A., and Grbic-Galic, D., 1994, Anaerobic degradation of toluene and o-xylene by a methanogenic consortium, Appl. Environ. Microbiol. 60: 313–322.PubMedGoogle Scholar
  88. Edwards, E. A., Wills, L. E., Reinhard, M., and Grbic-Galic, D., 1992, Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions, Appl. Environ. Microbial. 58: 794–800.Google Scholar
  89. Egli, C., Tschan, T., Scholtz, R., Cook, A. M., and Leisinger, T., 1988, Transforamtion of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii, Appl. Environ. Microbiol. 54: 2819–2824.PubMedGoogle Scholar
  90. Egli, C., Stromeyer, S., Cook, A. M., and Leisinger, T., 1990, Transformation of tetra-and trichloromethane to CO, by an anaerobic bacteria is a non-enzymic process, FEMS Microbiol. Lett. 68: 207–212.CrossRefGoogle Scholar
  91. Ellis, B., Balba, M. T., and Theile, P., 1990, Bioremediation of oil contaminated land, Environ. Technol. 11: 443–455.CrossRefGoogle Scholar
  92. Ellis, B., Harold, P., and Kronberg, H., 1991, Bioremediation of a creosote contaminated site, Environ. Technol. 12: 447–459.CrossRefGoogle Scholar
  93. Evans, P. J., Mang, D. T., and Young, L. Y., 1991a, Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures, Appl. Environ. Microbiol. 57: 450–454.PubMedGoogle Scholar
  94. Evans, P. J., Mang, D. T., Kim, K. S., and Young, L. Y., 1991b, Anaerobic degradation of toluene by a denitrifying bacterium, Appl. Environ. Microbiol. 57: 1139–1145.PubMedGoogle Scholar
  95. Federle, T. W., Dobbins, D. C., and Thornton-Manning, J. R., 1986, Microbial biomass, activity, and community structure in subsurface soils, Ground Water 24: 365–374.CrossRefGoogle Scholar
  96. Federle, T. W., Ventullo, R. M., and White, D. C., 1990, Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface, Microbial Ecology 20: 297–313.CrossRefGoogle Scholar
  97. Fish, W., 1993, Sub-surface redox chemistry: a comparison of equilibrium and reaction-based approaches, in: Metals in Groundwater (H. E. Allen, E. M.Perdue and D. S. Brown, eds.), Lewis Publishers, Ann Arbor, MI, pp. 73–101.Google Scholar
  98. Flathman, P. E., Jerger, D. E., and Exner, J. H., 1994, Bioremediation Field Experience, CRC Press, Boca Raton.Google Scholar
  99. Fleming, J. T., Sanseverino, J., and Sayler, G. S., 1993, Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites, Environ. Sci. Technol. 27: 1068–1074.CrossRefGoogle Scholar
  100. Fliermans, C. B., Phelps, T. J., Ringelberg, D., Mikell, A. T., and White, D. C., 1988, Mineralization of trichloroethylene by heterotrophic enrichment cultures, Appl. Environ. Microbiol. 54: 1709–1714.PubMedGoogle Scholar
  101. Flyvbjerg, J., Arvin, E., Jensen, B. K., and Olsen, S. K., 1993, Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions, J. Contam. Hydro(. 12: 133–150.CrossRefGoogle Scholar
  102. Fogel, M. M., Taddeo, A. R.. and Fogel, S., 1986, Biodegradation of chlorinated ethenes by a methane utilizing mixed culture, Appl. Environ. Ivlicrobiol. 51: 720–724.Google Scholar
  103. Fontes, D. E., Mills, A. L., Hornberger, G. M., and Herman, J. S., 1991, Physical and chemical factors influencing transport of microorganisms through porous media, Appt Environ. Microbiol. 57: 2473–2481.Google Scholar
  104. Francis, A. J., Slater, J. M., and Dodge, C. J., 1989, Denitrification in deep subsurface sediments, Geomicrobiol. J. 7: 103–116.CrossRefGoogle Scholar
  105. Francy, D. S., Thomas, J. M., Raymond, R. L., and Ward, C. H., 1991, Emulsification of hydrocarbons by subsurface bacteria, J. Indus. Microbiol. 8: 237–246.CrossRefGoogle Scholar
  106. Frederickson, J. K., and Hicks, R. J., 1987, Probing reveals many microbes beneath Earth’s surface, ASM News 53: 78–79.Google Scholar
  107. Frederickson, J. K., Garland, T. R., Hicks, R. J., Thomas, J. M., Li, S. W., and McFadden, K. M., 1989, Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties, Geomicrobiol. J. 7: 53–66.CrossRefGoogle Scholar
  108. Frederickson, J. K., Brockman, F. J., Workman, D. J., Li, S. W., and Stevens, T. 0., 1991, Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl. Environ. Microbiol. 57: 796–803.Google Scholar
  109. Freedman, D. L., and Gossett, J. M., 1989, Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions, Appl. Environ. Microbio!., 55: 2144–2151.Google Scholar
  110. Fries, M. R., Zhou, J., Chee-Sanford, J., and Tiedje, J. M., 1994, Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats, Appl. Environ. Microbiol. 60: 2802–2810.PubMedGoogle Scholar
  111. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta. 43: 1075–1090.CrossRefGoogle Scholar
  112. Fu, G., Kan, A. T., and Tomson, M., 1994, Adsorption and hysteresis of PAHs in surface sediment, Environ. Toxicol. Chem. 13: 1559–1567.CrossRefGoogle Scholar
  113. Gadd, G. M., 1988, Accumulation of metals by microorganisms and algae, Biotechnology 40: 403–433.Google Scholar
  114. Galli, R., and McCarty, P. L., 1989a, Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp., Appl. Environ. Microbio!. 55: 837–844.Google Scholar
  115. Galli, R., and McCarty, P. L., 19896, Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB, Appl. Environ. Microbiol. 55: 845–851.Google Scholar
  116. Gannon, J., Tan, Y., Baveye, P., and Alexander, M., 1991, Effect of sodium chloride on transport of bacteria in a saturated aquifer material, Appl. Environ. Microbiol. 57: 2497–2501.PubMedGoogle Scholar
  117. Gayle, B. P., Boardman, G. E., Sherrard, J. H., and Benoit, R. E., 1989, Biological denitrification of water, J. Environ. Engineer. 115: 930–943.CrossRefGoogle Scholar
  118. Ghiorse, W. C., and Balkwill, D. L., 1983, Enumeration and morphological characterization of bacteria indigenous to subsurface environments, Dev. Ind. Microbiol. 24: 213–224.Google Scholar
  119. Ghiorse, W. C., and Wilson, J. T., 1988, Microbial ecology of the terrestial subsurface, Adv. Appl. Microbiol. 33: 107–172.PubMedCrossRefGoogle Scholar
  120. Gibson, D. T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, in: Microbial Degradation of Organic Compounds ( D. T. Gibson, ed.), Marcel Dekker, New York, pp. 181–252.Google Scholar
  121. Gibson, S. A.. and Sewell, G. W., 1992, Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols, Appl. Environ. Microbial. 58: 1392–1393.Google Scholar
  122. Gillham, R. W., Starr, R. C., and Miller, D. J., 1990, A device for in situ determination of geochemical transport parameters 2. biochemical reactions, Ground Water 28: 858–862.CrossRefGoogle Scholar
  123. Girvin, D. C., Gassman, P. L., and Bolton, H., Jr., 1993, Adsorption of aqueous cobalt ethylenediaminetetraacetate by ALO,: effects of oxidation state, ionic strength and sorbent concentration, Soil Sci. Soc. Am. J. 57: 47.CrossRefGoogle Scholar
  124. Goldstein, R. A., Olson, B. H., and Porcella, D. B., 1988, Conceptual model of genetic regulation of mercury biogeochemical cycling, Environ. Technol. Let. 9: 957–964.CrossRefGoogle Scholar
  125. Gounot, A.-M., 1994, Microbial oxidation and reduction of manganese: consequences in groundwater applications, FEMS Microbio!. Rev. 14: 339–350.CrossRefGoogle Scholar
  126. Grant, D. J. W., and Al-Najjar, T. R., 1976, Degradation of quinoline by a soil bacterium, Microbios 15: 177–189.PubMedGoogle Scholar
  127. Grbic-Galic, D., and Vogel, T., 1987, Transformation of toluene and benzene by mixed methanogenic cultures, Appl. Environ. Microbio!. 53: 254–260.Google Scholar
  128. Grosser, R. J., Warshawsky, D., and Vestal, J. R., 1991, Indigenous and enhanced mineralization of pyrene, benzolalpyrene, and carbazole in soils, Appl. Environ. Microbiol. 57: 3462–3469.PubMedGoogle Scholar
  129. Gunther, K., Schlosser, D., and Fritsche, W., 1995, Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. J. Basic Microbial. 35: 83–92.CrossRefGoogle Scholar
  130. Haag, F., Reinhard, M., and McCarty, P. L., 1991, Degradation of toluene and p-xylene in anaerobic microcosms: evidence for sulfate as a terminal electron acceptor, Environ. Toxicol. Chem. 10: 1379–1389.Google Scholar
  131. Hamon, M., and Fustec, E., 1991, Laboratory and field study of an in situ groundwater denitrification reactor, J. Wat. Pollut. Control Fed. 63: 942–949.Google Scholar
  132. Haner, A., Hohener, P., and Zeyer, J., 1995, Degradation of p-xylene by a denitrifying enrichment culture, Appl. Environ. Microbiol. 61: 3185–3188.PubMedGoogle Scholar
  133. Hardman, D. J., 1991, Biotransformation of halogenated compounds, Critical Reviews in Biotechnology 11: 1–40.PubMedCrossRefGoogle Scholar
  134. Hardoyo, J. K., and Ohtake, H., 1991, Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HOI, J. Gen. Appl. Microbiol. 37: 519–522.CrossRefGoogle Scholar
  135. Harvey, R. W., and George, L. H., 1987, Growth determinations for unattached bacteria in a contaminated aquifer, Appl. Environ. Microbiol. 53: 2992–2996.PubMedGoogle Scholar
  136. Harvey, R. W., Smith, R. L., and George, L., 1984, Effect of organic contamination upon the microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer, Appl. Environ. Microbiol. 48: 1197–1202.PubMedGoogle Scholar
  137. Harvey, R. W., Kinner, N. E., Bunn, A., MacDonald, D., and Metge, D., 1995, Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sediments, Appl. Environ. Microbiol. 61: 209–217.PubMedGoogle Scholar
  138. Heitkamp, M. A., Freeman, J. P., and Cerniglia, C. E., 1987, Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and charcterization of metabolites, Appl. Environ. Microbiol. 53: 129–136.PubMedGoogle Scholar
  139. Henry, S. M., and Grbic-Galic, D., 1991a, Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer, Appl. Environ. Microbiol. 57: 236–244.PubMedGoogle Scholar
  140. Henry, S. M., and Grbic-Galic, D., 1991b, Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide, Appl. Environ. Microbiol. 57: 1770–1776.PubMedGoogle Scholar
  141. Herbes, S. E., and Schwall, L. R., 1978, Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments, Appl. Environ. Microbiol. 35: 306–316.PubMedGoogle Scholar
  142. Hicks, R. J., and Frederickson, J. K., 1989, Aerobic metabolic potential of microbial populations indigenous to deep subsurface environments, Geomicrobiol. J. 7: 67–77.CrossRefGoogle Scholar
  143. Hirsch, P., 1992, Microbiology, in: Progress in Hydrogeochemistry ( G. Matthess, F.Frimmel, P. Hirsch, H. D. Schulz, and H.-E. Usdowski, eds.), Springer-Verlag, New York, pp. 308–311.CrossRefGoogle Scholar
  144. Hirsch, P., and Rades-Rohkohl, E., 1983, Microbial diversity in a groundwater aquifer in northern Germany, Dev. Ind. Microbiol. 24: 183–200.Google Scholar
  145. Hirsch, P., and Rades-Rohkohl, E., 1988, Some special problems in the determination of viable counts of groundwater microorganisms, Microbial Ecology 16: 99–113.CrossRefGoogle Scholar
  146. Hoeppel, R. E., and Hinchee, R. E., 1993, Enhanced biodegradation for on-site remediation of contaminated soils and groundwater, in: Hazardous Waste Site Soil Remediation ( J. D. Wilson, and N. A. Clarke, eds.), Marcel Dekker, New York, pp. 311–431.Google Scholar
  147. Holliger, C., and Schraa, G., 1994, Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria, FEMS Microbiol. Rev. 15: 297–305.PubMedCrossRefGoogle Scholar
  148. Holliger, C., and Schumacher, W., 1994, Reductive dehalogenation as a respiratory process, Antoine van Leeuwenhoek 66: 239–246.CrossRefGoogle Scholar
  149. Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1993, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ. Microbiol. 59: 2991–2997.PubMedGoogle Scholar
  150. Holm, P. E., Nielsen, P. H., and Christensen, T. H., 1991, Aerobic groundwater and groundwater sediment degradation potential for xenobiotic compounds measured in situ, in: In Situ Bio-reclamation, ( E. R. Hinchee, and F. R. Olfenbuttel, eds.), Butterworth-Heinemann, Stoneham, MA, pp. 413–419.Google Scholar
  151. Holm, P. E., Nielson, P. H., Albrechtson, H.-J., and Christensen, T. H., 1992, Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer, Appl. Environ. Microbiol. 58: 3020–3026.PubMedGoogle Scholar
  152. Hopkins, G. D., and McCarty, P. L., 1995, Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates, Environ. Sci. Technol. 29: 1628–1637.PubMedCrossRefGoogle Scholar
  153. Hopkins, G. D., Munakata, J., Semprini, L., and McCarty, P. L., 1993a, Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms, Environ. Sci. Technol. 27: 2542–2547.CrossRefGoogle Scholar
  154. Hopkins, G. D., Semprini, L., and McCarty, P. L., 19936, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Appl. Environ. Microbiol. 59: 2277–2285.Google Scholar
  155. Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S., and Kawai, K., 1987, Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1, Agric. Biol. Chem. 51: 2417–2420.CrossRefGoogle Scholar
  156. Hou, C. T., Patel, R., Laskin, A. I., Bamabe, N., Barist, I., 1983, Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria, Appl. Environ. Microbiol. 46: 171–177.PubMedGoogle Scholar
  157. Huling, S. G., Bledsoe, B. E., and White, M. V., 1990, Enhanced bioremediation using hydrogen peroxide as a supplemental source of oxygen: a laboratory and field study, US Environmental Protection Agency Report, EPA/600/52–90/006Google Scholar
  158. Hutchins, S. R., 1991, Optimizing BTEX biodegradation under denitrifying conditions, Environ. Toxicol. Chem. 10: 1437–1448.CrossRefGoogle Scholar
  159. Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, G. A., 1991, Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions, Environ. Sci. Technol. 25: 68–76.CrossRefGoogle Scholar
  160. Hyman, M. R., Russel, S. A., Ely, R. L., Williamson, K. J., and Arp, D. J., 1995, Inhibition, inactivation and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea, Appl. Environ. Microbiol. 61: 1480–1487.PubMedGoogle Scholar
  161. Ishibashi, Y., Cervantes, C., and Silver, S., 1990, Chromium reduction in Pseudomonas putida, Appl. Environ. Microbiol. 56: 2268–2270.PubMedGoogle Scholar
  162. Jackson, R. E., and Patterson, R. J., 1982, Interpretation of pH and Eh trends in a fluvial-sand aquifer system, Wat. Resour. Res. 18: 1255–1268.CrossRefGoogle Scholar
  163. Jain, R. K., Sayler, G. S., Wilson, J. T., Houston, L., and Pacia, D., 1987, Maintenance and stability of introduced genotypes in groundwater aquifer material, Appl. Environ. Microbiol. 53: 996–1002.PubMedGoogle Scholar
  164. Janda, V., Rudovsky, J., Wanner, J., and Marha, K., 1988, In situ denitrification of drinking water, Wat. Sci. Tech. 20: 215–219.Google Scholar
  165. Janssen, D. B., Scheper, A., Dijkhuizen, L., and Witholt, B., 1985, Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ 10, Appl. Environ. Microbiol., 49: 673–677.PubMedGoogle Scholar
  166. Jaudon, P., Massiani, J. G., Rey, J., and Vacelet, E., 1989, Groundwater pollution by manganese. manganese speciation: application to the selection and discussion of an in situ groundwater treatment, Sci. Tot. Environ. 84: 169–183.CrossRefGoogle Scholar
  167. Jenkins, K. B., Michelsen, D. L., and Novak, J. T., 1993, Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column, Biotechnol. Prog. 9: 394–400.CrossRefGoogle Scholar
  168. Jensen, B. K., 1989, ATP-related specific heterotrophic activity in petroleum contaminated and uncontaminated groundwaters, Can. J. Microbiol. 35: 814–818.CrossRefGoogle Scholar
  169. Ka, J. O., Holben, W. E., and Tiedje, J. M., 1994a, Analysis of competition in soil among 2,4- dichlorophenoxyacetic acid-degrading bacteria, Appl. Environ. Microbiol. 60: 1121–1128.PubMedGoogle Scholar
  170. Ka, J. O., Holben, W. E., and Tiedje, J. M., 1994b, Use of gene probes to aid in the recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil, Appl. Environ. Microbiol. 60: 1116–1120.PubMedGoogle Scholar
  171. Ka, J. O., Holben, W. E., and Tiedji, J. M., 1994c, Genetic and phenotypic diversity of 2,4dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils, Appl. Environ. Microbio!. 60: 1106–1115.Google Scholar
  172. Kaiser, J.-P., and Bollag, J.-M., 1992, Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives, Soil Biology and Biochemistry, 24: 351–357.CrossRefGoogle Scholar
  173. Kampfer, P., Steiof, M., and Dott, W., 1991, Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria, Microb. Ecol. 21: 227–251.CrossRefGoogle Scholar
  174. Kampfer, P., Steiof, M., Becker, P. M., and Dott, W., 1993, Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site, Microb. Ecol. 26: 161–188.CrossRefGoogle Scholar
  175. Keenan, J. E., Strand, S. E., and Stensel, H. D., 1994, Degradation kinetics of chlorinated solvents by a propane-oxidizing culture, in Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, ( R. E. Hinchee, A. Leeson, L. Semprini, and S.K. Ong, eds., Lewis Publishers, Boca Raton, pp. 1–13.Google Scholar
  176. King, R., Barry, Long, G. M., and Sheldon, J. K., 1992, Practical Environmental Bioremediation, CRC Press, Inc., Boca Raton.Google Scholar
  177. Kishi, H., Kogure, N., and Hashimoto, Y., 1990, Contribution of soil constituents in adsorption coefficient of aromatic compounds, halogenated alicyclic and aromatic compounds to soil, Chemosphere 21: 867–876.CrossRefGoogle Scholar
  178. Kitts, C. L., Cunningham, D. P., and Unkefer, P. J., 1994, Isolation of three hexahydro-1,3,5trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil, Appl. Environ. Microbiol. 60: 4608–4711.PubMedGoogle Scholar
  179. Klecka, G. M., Davis, J. W., Gray, D. R., and Madsen, S. S., 1990, Natural bioremediation of organic contaminants in ground water: cliffs-dow superfund site, Ground Water 28: 534–543.CrossRefGoogle Scholar
  180. Koh, S.-C., Bowman, J. P., and Sayler, G. S., 1993, Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph Methylomonas methanica 68–1, Appl. Environ. Microbio!. 59: 960–967.Google Scholar
  181. Kolbel-Boelke, J., Anders, E.-M., and Nehrkom, A., 1988b, Microbial communities in the saturated groundwater environment II: diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities, Microbial. Ecol. 16: 31–48.CrossRefGoogle Scholar
  182. Kolbel-Boelke, J., Teinken, B., and Nehrkom, A., 1988a, Microbial communities in the saturated groundwater environment I: methods of isolation and characterization of heterotrophic bacteria, Microbial. Ecol. 16: 17–29.CrossRefGoogle Scholar
  183. Konopka, A., 1993, Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines, FEMS Microbiology Letters, 111: 93–100.CrossRefGoogle Scholar
  184. Korom, S. F., 1992, Natural denitrification in the saturated zone: a review, Wat. Resour. Res. 28: 1657–1668.CrossRefGoogle Scholar
  185. Korte, N., 1991, Naturally occurring arsenic in groundwaters of the midwestern United States, Environ. Geol. Water. Sci. 18: 137–141.CrossRefGoogle Scholar
  186. Krumme, M. L., Timmis, K. N., and Dwyer, D. F., 1993, Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PRI in aquifer microcosms, Appl. Environ. Microbio!. 59: 2746–2749.Google Scholar
  187. Krumme, M. L., Smith, R. L., Egestorff, J., Thiem, S. M., Tiedje, J. M., Timmis, K. N.and Dwyer, D. F., 1994, Behavior of pollutant-degrading microorganisms in aquifers: predictions for genetically engineered organisms, Environ. Sci. Technol. 28: 1134–1138.Google Scholar
  188. Kuhn, E. P., and Sutlita, J. M., 1989, Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater—a review, in Reactions and Movements of Organic Chemicals in Soils, ( B. L. Sawhney, and K. Brown, eds.), Soil Science Society of America and American Society of Agronomy, Madison, WI., pp. 111–180.Google Scholar
  189. Kuhn, E. P., Colberg, P. J., Schnoor, J. L., Wanner, O., Zehnder, A. J. B., and Schwarzenbach, R. P., 1985, Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies, Environ. Sci. Technol. 19: 961–968.CrossRefGoogle Scholar
  190. Kuhn, E. P., Zeyer, J., Eicher, P., and Schwarzenbach, R. P., 1988, Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns, Appl. Environ. Microhiol. 54: 490–496.Google Scholar
  191. Kuznetsov, S. I., lvanov, M. V., and Lyalikova, N. N., 1963, Introduction to Geological Microbiology, McGraw-Hill, New York.Google Scholar
  192. Laverman, A. M., Blum, J., Switzer, Schaeffer, J. K., Phillips, E. J. P.. Lovley, D. R., and Oremland, R. S., 1995, Growth of SES-3 with arsenate and other diverse electron acceptors, Appl. Environ. Microhiol. 61: 3556–3561.Google Scholar
  193. Leduc, R., Samson, R., Al-Bashir, B.. Al-Hawari, J., and Cseh, T., 1992, Biotic and abiotic disappearance of four PAH compounds from flooded soil under various redox conditions, Wat. Sci. Tech. 26: 51–60.Google Scholar
  194. Lee, M. D., Thomas, J. M., Borden, R. C., Bedient, P. B., Ward, C. H., and Wilson, J. T., 1988, Biorestoration of aquifers contaminated with organic compounds, CRC Critical Reviews in Environmental Control 18: 29–89.CrossRefGoogle Scholar
  195. Lee, M. I.. Wilson, J. T., and Ward, C. H., 1983. Microbial degradation of selected aromatics in a harzardous waste site, Der. Ind. Microbiol. 44: 557–565.Google Scholar
  196. Lee, W. E.. and Borden, R. C., 1988, Anaerobic biotransformation of hydrocarbons in the subsurface: field observations, EOS 69: 368.CrossRefGoogle Scholar
  197. Lewis, T. A., and Crawford, R. L.. 1993. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC, Appl. Environ. Microbiol. 59: 1635–1641.PubMedGoogle Scholar
  198. Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microhiol. 54: 951–956.Google Scholar
  199. Lloyd-Jones, G., and Trudgill, P. W., 1989, The degradation of alicyclic hydrocarbons by a microbial consortium, International Biodeterioration, 25: 197–206.CrossRefGoogle Scholar
  200. Long, R. H. B., Benson, S. M., Tokunaga, T. K., and Yee, A., 1990, Selenium immobilization in a pond sediment at Kesterson Reservior, J. Environ. Qual. 19: 302–311.CrossRefGoogle Scholar
  201. Lovley, D. R., 1985, Minimum threshold for hydrogen metabolism in methanogenic bacteria, Appl. Environ. Microhiol. 49: 1530–1531.Google Scholar
  202. Lovley, D. R., 1991, Dissimilatory Fe(111) and Mn(IV) reduction, Microhiol. Rev. 55: 259–287.Google Scholar
  203. Lovley, D. R., 1993, Dissimilatory metal reduction, Annu. Rev. Microhiol. 47: 263–90.CrossRefGoogle Scholar
  204. Lovley, D. R., 1995, Microbial reduction of iron, manganese, and other metals, Adv. Agron. 54: 175–231.CrossRefGoogle Scholar
  205. Lovley, D. R., 1997, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers, J. Industr. Microbiol. 18: 75–81.CrossRefGoogle Scholar
  206. Lovley, D. R., and Chapelle, F. H., 1995a, Deep subsurface microbial processes, Rev. Geophys. 33: 365–381.CrossRefGoogle Scholar
  207. Lovley, D. R., and Chapelle, F. H., 1997, A modeling approach to elucidating the distribution and rates of microbially catalyzed redox reactions in anoxic groundwater, in: Mathematical Models in Microbial Ecology,(J. A. Robinson, ed.), Chapman and Hall, New York, (in press).Google Scholar
  208. Lovley, D. R., and Goodwin, S., 1988, Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta. 52: 2993–3003.CrossRefGoogle Scholar
  209. Lovley, D. R., and Klug, M. J., 1986, Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim. Acta. 50: 11–18.CrossRefGoogle Scholar
  210. Lovley, D. R., and Lonergan, D. J., 1990, Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-I5, Appl. Environ. Microbiol. 56: 1858–1864.PubMedGoogle Scholar
  211. Lovley, D. R., and Phillips, E. J. P., 1987, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol. 53: 2636–2641.PubMedGoogle Scholar
  212. Lovley, D. R., and Phillips, E. J. P., 1992a, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol. 26: 2228–2234.CrossRefGoogle Scholar
  213. Lovley, D. R., and Phillips, E. J. P., 1992b, Reduction of uranium by Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 58: 850–856.PubMedGoogle Scholar
  214. Lovley, D. R., and Phillips, E. J. P., 1994a, Novel processes for anoxic sulfate production from elemental sulfur by sulfate-reducing bacteria, Appl. Environ. Microbiol 60: 2394–2399.PubMedGoogle Scholar
  215. Lovley, D. R., and Phillips, E. J. P., 1994b, Reduction of chromate by Desulfovibrio vulgaris (Hildenborough) and its cj cytochrome, Appl. Environ. Microbiol. 60: 726–728.PubMedGoogle Scholar
  216. Lovley, D. R., and Woodward, J. C., 1992, Consumption of CFC-l1 and CF-12 by anaerobic sediments and soils, Environ. Sci. Technol. 26: 925–929.CrossRefGoogle Scholar
  217. Lovley, D. R., and Woodward, J. C., 1996, Mechanism for chelator stimulation of microbial Fe(III) oxide reduction, Chem. Geol., 132: 19–24.CrossRefGoogle Scholar
  218. Lovley, D. R., Dwyer, D. F., and Klug. M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl. Environ. Microbiol. 43: 1373–1379.PubMedGoogle Scholar
  219. Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., 1989a, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339: 297–299.CrossRefGoogle Scholar
  220. Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J., 1989b, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol. 55: 700–706.PubMedGoogle Scholar
  221. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R., 1991, Microbial reduction of uranium, Nature 350: 413–416.CrossRefGoogle Scholar
  222. Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C., 1993a, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geol. 113: 41–53.CrossRefGoogle Scholar
  223. Lovley, D. R., Widman, P. K., Woodward, J. C., and Phillips, E. J. P., 1993b, Reduction of uranium by cytochrome c; of Desulfovibrio vulgaris, Appl. Environ. Microbiol. 59: 3572–3576.PubMedGoogle Scholar
  224. Lovley, D. R., Chapelle, F. H., and Woodward, J. C., 1994a, Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic groundwater, Environ. Sci. Technol. 28: 1205–1210.PubMedCrossRefGoogle Scholar
  225. Lovley, D. R., Woodward, J. C., and Chapelle, F. H., 1994b, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature 370: 128–131.PubMedCrossRefGoogle Scholar
  226. Lovley, D. R., Coates, J. D., Woodward, J. C., and Phillips, E. J. P., 1995, Benzene oxidation coupled to sulfate reduction, Appl. Environ. Microbiol. 61: 953–958.PubMedGoogle Scholar
  227. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., and Woodward, J. C., I996a, Humic substances as electron acceptors for microbial respiration, Nature, 382: 445–448.Google Scholar
  228. Lovley, D. R., Woodward, J. C., and Chapelle, F. H., 1996b, Rapid anaerobic benzene oxidation with a variety of chelated Fe(IIl) forms, Appl. Environ. Microbiol. 62: 288–291.PubMedGoogle Scholar
  229. Luthy, R. G., Dzombak, D. A., Peters, C. A., Roy, S. B., Ramaswami, A., Nakles, D. V., and Nott, B. R., 1994, Remediating tar-contaminated soils at manufactured gas plant sites, Environ. Sci. Technol. 28: 266A - 276A.CrossRefGoogle Scholar
  230. Lyngkilde, J., and Christensen, T. H., 1992a, Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10: 291–307.CrossRefGoogle Scholar
  231. Lyngkilde, J., and Christensen, T., H., 1992b, Redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10: 273–289.CrossRefGoogle Scholar
  232. Macaskie, L. E., 1991, The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams, Crit. Rev. in Biotech. 11:41–112.Google Scholar
  233. MacIntyre, W., G., Boggs, M., Antworth, C., P., and Stauffer, T., B., 1993, Degradation kinetics of aromatic organic solutes introduced into a heterogenous aquifer, Water Resources Research 20: 4045–4051.CrossRefGoogle Scholar
  234. MacLeod, F. A., Lappin-Scott, H. M., and Costerton, J. W., 1988, Plugging of a model rock system by using starved bacteria, Appl. Environ. Microbiol. 54: 1365–1372.PubMedGoogle Scholar
  235. Madsen, E. L., 1991, Determining in situ biodegradation, Environ. Sci. Technol. 25: 1663–1673.CrossRefGoogle Scholar
  236. Madsen, E. L., 1995, Impacts of agricultural practices on subsurface microbial ecology, in: Advances in Agronomy, 54 ( D. L. Sparks, ed.), Academic Press, San Diego, pp. 1–67.Google Scholar
  237. Madsen, E. L., and Ghiorse, W. C., 1993, Groundwater microbiology: subsurface ecosystem processes, in: Aquatic Microbiology, An Ecological Approach ( T. E. Ford, ed.), Blackwell Scientific, Boston, pp. 167–213.Google Scholar
  238. Madsen, E. L., Sinclair, J. L., and Ghiorse, W. C., 1991, In situ biodegradation: microbiological patterns in a contaminated aquifer, Science 252: 830–833.PubMedCrossRefGoogle Scholar
  239. Madsen, E. L., Winding, A., Malachowsky, K., Thomas, C. T., and Ghiorse, W. C., 1992, Contrasts between subsurface microbial communities and their metabolic adaptation to poly-cyclic aromatic hydrocarbons at a forested and an urban coal-tar site, Microb. Ecol. 24: 199–213.CrossRefGoogle Scholar
  240. Major, D. W., Mayfield, C. 1., and Barker, J. F., 1988, Biotransformation of benzene by denitrification in aquifer sand, Ground Water 26: 8–14.CrossRefGoogle Scholar
  241. Mariotti, A. A., Landreau, A., and Simon, B., 1988, 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France, Geochim. Cosmochim. Acta 52: 1869–1878.Google Scholar
  242. Marxsen, J., 1988, Investigations into the number of respiring bacteria in groundwater from sandy and gravelly deposits, Microb. Ecol. 16: 65–72.CrossRefGoogle Scholar
  243. Mateju, V., Cizinska, S., Krejci, J., and Janoch, T., 1992, Biological water denitrification-a review, Enzyme Microb. Technol. 14: 170–183.CrossRefGoogle Scholar
  244. Matthess, G., 1992, Silicate systems, in: Progress in Hydrogeochemistry, ( G. Matthess, F. Frimmel, P. Hirsch, H. D. Schulz, and H.-E. Usdowski, eds.), Springer-Verlag, New York, pp. 199–201.CrossRefGoogle Scholar
  245. Maymo-Gatell, X., Tandoi, V., Gossett, J. M., and Zinder, S. H., 1995, Characterization of an H2- utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis, Appl. Environ. Microbiol. 61: 3928–3933.PubMedGoogle Scholar
  246. McAllister, P. M., and Chiang, C. Y., 1994, A practical approach to evaluating natural attenuation of contaminants in ground water, Ground Wat. Monit. Remed. 14: 56–79.CrossRefGoogle Scholar
  247. McCarty, P. L., 1972, Energetics of organic matter degradation, in: Water Pollution Microbiology ( R. Mitchell, ed.), John Wiley, New York, pp. 91–118.Google Scholar
  248. McCarty, P. L., and Semprini, L., 1994, Ground-water treatment for chlorinated solvents, in: Handbook of Bioremediation ( R D. Norris, R. E. Hirchee, R. Brown, P. L. McCarty, L. Semprimi, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C., Borden, T. M. Vogel, J. M. Thomas, C. H. Ward, eds.), Lewis Publishers, Boca Raton, pp. 87–116.Google Scholar
  249. McCarty, P. L., Semprini, L., Dolan, M. E., Harmon, T. C., Tiedeman, C., and Gorelick, S. M., 1991, In situ methanogenic bioremediation for contaminated groundwater at St. Joseph, Michigan, in: On-Site Bioreclamation: Processes for Xenobiotic and HydrocarbonTreatment (E. R. Hinchee, and F. R. Olfenbuttel, eds.), Butterworth-Heinemann, Boston, pp. 16–40.Google Scholar
  250. McNabb, J. F., and Dunlap, W. J., 1975, Subsurface biological activity in relation to ground-water pollution, Ground Water 13: 33–44.CrossRefGoogle Scholar
  251. McNabb, W. W, Jr., and Narasimhan, T. N., 1994, Degradation of chlorinated hydrocarbons and groundwater geochemistry: A field study, Environ. Sci. Technol. 28: 769–775.CrossRefGoogle Scholar
  252. Mercado, A., Libhaber, M., and Soares, M. I. M., 1988, In situ biological groundwater denitrification: concepts and preliminary field tests, Wat. Sci. Tech. 20: 197–209.Google Scholar
  253. Mihelcic, J. R., and Luthy, R. G., 1988a, Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems, Appl. Environ. Microhiol. 54: 1182–1187.Google Scholar
  254. Mihelcic, J. R., and Luthy, R. G., 1988b, Microbial degradation of acenaphthalene and naphthalene under denitrification conditions in soil-water systems, Appl. Environ. Microhiol. 54: 1188–1198.Google Scholar
  255. Millette, D., Barker, J. F., Comeau, Y., Butler, B. J., Frind, E. O., Clement, B., and Samson, R., 1995, Substrate interaction during aerobic biodegradation of creosote-related compounds: a factorial batch experiment, Environ. Sci. Technol. 29: 1944–1952.PubMedCrossRefGoogle Scholar
  256. Mills, A. L., Herman, J. S., Hornberger, G. M., and DeJesus, T. H., 1994, Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand, Appl. Environ. Microbial. 60: 3300–3306.Google Scholar
  257. Mohn, W. W., and Tiedje, J. M., 1992, Microbial reductive dehalogenation, Microhiol. Rev. 14: 482–507.Google Scholar
  258. Morgan, P., and Watkinson, R. J., 1989, Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds, FEMS Microbiol. Rev. 63: 277–300.CrossRefGoogle Scholar
  259. Morgan, P., and Watkinson, R. J., 1992, Factors limiting the supply and frequency of nutrient and oxygen supplements for the in situ biotreatment of contaminated soil and groundwater, Water Research 26: 73–78.CrossRefGoogle Scholar
  260. Morgan, P., Lewis, S. T., and Watkinson, R. J., 1993, Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condenstate-contaminated ground-water, Environ. Poll. 82: 181–190.CrossRefGoogle Scholar
  261. Morris, J. T., Whiting, G. J., and Chapelle, F. H., 1988, Potential denitrification rates in deep sediments from the southeastern coastal plain, Environ. Sci. Technol. 22: 332–335.CrossRefGoogle Scholar
  262. Nelson, M. J. K., Montgomery, S. O., O’Neill, E. J., and Pritchard, P. H., 1986, Aerobic metabo- lism of trichloroethylene by a bacterial isolate, Appl. Environ. Microbial. 52: 383–384.Google Scholar
  263. Nelson, M. J. K., Montgomery, S. O., Mahaffey, W. R., and Pritchard, P. H., 1987, Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway, Appl. Environ. Microbiol. 53: 949–954.PubMedGoogle Scholar
  264. Nielson, P. H., and Christensen, T. H., 1994, Variability of biological degradation of aromatic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments, J. Contam. Hydrol. 15: 305–320.CrossRefGoogle Scholar
  265. Norris, R. D., Hinchee, R. E., Brown, R., McCarty, P. L., Semprini, L., Wilson, J. T., Kampbell, D. H., Reinhard, M., Bouwer, E. J., Borden, R. C., Vogel, T. M., Thomas, J. M., and Ward, C. H., 1994, Handbook of Bioremediation, CRC Press, Boca Raton.Google Scholar
  266. Ogunseitan, O. A., and Olson, B. H., 1991, Potential for genetic enhancement of bacterial detoxification of mercury waste in: Proceedings of the Mineral Bioprocessing Conference (R. W. Smith and M. Misra, eds.), The Minerals, Metals and Materials Society, Santa Barbara, pp. 325–337.Google Scholar
  267. Oldenhius, R., Oedzes, J. Y., van der Waarde, J. J., and Janssen, D. B., 1991, Kinetics-of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Appl. Environ. Microbiol. 57: 7–14.Google Scholar
  268. Olson, B. H., Cayless, S. M., Ford, S., and Lester, J. N., 1991, Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-contaminated soil, sediments, and sludges, Arch. Environ. Contam. Toxicol. 20: 226–233.CrossRefGoogle Scholar
  269. Oremland, R. S., 1994, Biogeochemical transformations of selenium in anoxic environments, in: Selenium in the Environment ( W. T. J. Frankenberger and S. N. Benson, eds.), Marcel Dekker, New York, pp. 389–419.Google Scholar
  270. Oremland, R. S., Steinberg, N. A., Maest, A. S., Miller, L. G., and Hollibaugh, J. T., 1990, Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments, Environ. Sei. Technol. 24: 1157–1164.CrossRefGoogle Scholar
  271. Oremland, R. S., Steinberg, N. A., Presser, T. S., and Miller, L. G., 1991, In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada, Appl. Environ. Microbiol. 57: 615–617.PubMedGoogle Scholar
  272. Pardieck, D. L., Bouwer, E. J., and Stone, A. T., 1992, Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A Review, J. Contam. Hvdrol. 9: 221–242.CrossRefGoogle Scholar
  273. Parsons, F., Barrio-Lage, G., and Rice, R.. 1985, Biotransformation of chlorinated organic solvents in static microcosms, Environ. Toxicol. Chem., 4: 739–742.CrossRefGoogle Scholar
  274. Parsons, F., Wood, P. R., DeMarco, J., 1984, Transformations of tetrachloroethene and trichloroethene in microcosms and groundwater, Am. Water Works, Assoc. 71: 56–59.Google Scholar
  275. Patterson, B., M., Pribac, F., Barber, C., Davis, G., B., and Gibbs, R., 1993, Biodegradation and retardation of PCE and BTEX compounds in aquifer material from Western Australia using large-scale columns, J. Contam. Hydro’. 14: 261–278.CrossRefGoogle Scholar
  276. Pedersen, K., 1993, The deep subterranean biosphere, Earth-Science Rev. 34: 243–260.CrossRefGoogle Scholar
  277. Phelps, T. J., Ringleberg, D., Hedrick, D., Davis, J., Fliermans, C. B., and White, D. C., 1988, Microbial biomass and activities associated with subsurface environments contaminated with chlorinated hydrocarbons, Geomicrobiol. J. 6: 157–170.CrossRefGoogle Scholar
  278. Phelps, T. J., Raione, E. G., White, D. C.. and Fliermans, C. B., 1989, Microbial activities in deep subsurface environments, Geomicrobiol. J. 7: 79–91.CrossRefGoogle Scholar
  279. Podoll, R. T., Irwin, K. C., and Parish, H. J., 1989, Dynamic studies of naphthalene sorption on soil from aqueous solution, Chernosphere 18: 2399–2412.Google Scholar
  280. Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Agron. 24: 29–96.CrossRefGoogle Scholar
  281. Portier, R. J., Zoeller, A. L., and Fujisaki, K., 1990, Bioremediation of pesticide-contaminated groundwater, Remediation 1: 41–60.CrossRefGoogle Scholar
  282. Postma, D., Boesen, C.. Kristiansen, H., and Larsen, F., 1991, Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling, Wat. Resour. Res. 27: 2027–2045.CrossRefGoogle Scholar
  283. Rabus, R., and Widdel, F., 1995, Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by a new denitrifying bacteria, Arch. Mirobiol. 163: 96–103.Google Scholar
  284. Rabus, R., Nordhaus, R., Ludwig, W., and Widdel, F., 1993, Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium, Appl. Environ. Microbiol. 59: 1444–1451.PubMedGoogle Scholar
  285. Radehaus, P. M., and Schmidt, S. K., 1992, Characterization of a novel Pseudomomas sp. that mineralizes high concentrations of pentachlorophenol, Appl. Environ. Microbial. 58: 2879–2885.Google Scholar
  286. Radosevich, M., and Klein, D. A., 1993, Bacterial enumeration and mercury volatilization in deep subsurface sediment samples, Bull. Environ. Contam. Toxicol. 51: 226–233.PubMedCrossRefGoogle Scholar
  287. Rainwater, K., Mayfield, M. P., Heintz, C., and Claborn, B. J., 1993, Enhanced in situ biodegradation of diesel fuel by cyclic vertical water table movement: preliminary studies, Water Environ. Res. 65: 717–725.CrossRefGoogle Scholar
  288. Raymond, R. L., Brown, R. A., Norris, R. D., and O’Neill, E. T., 1986, Stimulation of biooxidation processes in subterranean formations, U.S. Patent 4,588,506 (5–13–86), FMC Corporation, Philadelphia.Google Scholar
  289. Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Ann. Rev. Earth Planet. Sci. 11: 269–298.CrossRefGoogle Scholar
  290. Regnell, O., 1990, Conversion and partitioning of radio-labelled mercury chloride in aquatic model systems, Can. J. Fish. Aquat. Sci. 47: 548–553.CrossRefGoogle Scholar
  291. Ridgway, H. F., Safarik, J., Phipps, D., Carl, P., and Clark, D., 1990, Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer, Appl. Environ. Microbiol. 56: 3565–3575.PubMedGoogle Scholar
  292. Rittman, B. E., and McCarty, P. L., 1980, Utilization of dichloromethane by suspended and fixed-film bacteria, Appl. Environ. Microbiol. 39: 1225–1226.Google Scholar
  293. Roberts, P. V., Hopkins, G. D., Mackay, D. M., and Semprini, L., 1990, A field evaluation of in-situ biodegradation of chlorinated ethenes: part 1, methodology and field site characterization, Ground Water 28: 591–604.CrossRefGoogle Scholar
  294. Rochelle. P. A., Wetherbee, M. K., and Olson, B. H., 1991, Distribution of DNA sequences encoding narrow-and broad-spectrum mercury resistance, Appl. Environ. Microbiol. 57: 1581–1589.Google Scholar
  295. Rugge, K., Bjerg, P. L., and Christensen, T. H., 1995, Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill (Grindsted, Denmark, Environ. Sci. Technol. 29: 1395–1400.CrossRefGoogle Scholar
  296. Salanitro, J. P., 1993, The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers, Ground Water Monitoring Review 13: 150–161.CrossRefGoogle Scholar
  297. Sayler, G. S., Shields, M. S., Tedford, E. T., Breen, A., Hooper, S. W., Sirotin, K. M., and Davis, J. W., 1985, Application of DNA-DNA colony hybridization to the dectection of catabolic genotypes in environmental samples, Appl. Environ. Microbiol. 49: 1295–1303.PubMedGoogle Scholar
  298. Schocher, R. J., Seyfried, B., Vazquez, F., and Zeyer, J., 1991, Anaerobic degradation of toluene by pure cultures of dentrifying bacteria, Arch. Microbiol. 157: 7–12.PubMedCrossRefGoogle Scholar
  299. Scholl, M. A., and Harvey, R. W., 1992, Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contâminated sandy aquifer, Environ. Sci. Technol. 26: 1410–1417.CrossRefGoogle Scholar
  300. Scholz-Muramatsu, H., Neuman, A., Meßmer, M., Moore, E., and Diekert, G., 1995, Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium, Arch. Microbiol. 163: 48–56.CrossRefGoogle Scholar
  301. Schwille, F., 1976, Anthropogenically reduced groundwaters, Hydrol. Sci. Bull. 21: 629–645.CrossRefGoogle Scholar
  302. Semprini, L., and McCarty, P. L., 1991, Comparison between model simulations and field results of in-situ biorestoration of chlorinated aliphatics: part 1. biostimulation of methanotrophs, Ground Water 29: 365–374.CrossRefGoogle Scholar
  303. Semprini, L., and McCarty, P. L., 1992, Comparison between model simulations and field results of in-situ biorestoration of chlorinated aliphatics: part 2. cometabolic transformations, Ground Water 30: 37–44.CrossRefGoogle Scholar
  304. Semprini, L., Hopkins, G. D., Roberts, P. V., and McCarty, P. L., 1990, In-situ biotransformation of carbon tetrachloride, 1,1,1-trichloroethane, Freon-11, and Freon-113 under anoxic conditions, EOS, Trans. Amer. Geophys. Union 71: 1324.Google Scholar
  305. Semprini, L., Hopkins, G. D., Roberts, P. V., Grbic-Galic, D., and McCarty, P. L., 1991, A field evaluation of in-situ biodegradation of chlorinated ethenes: part 3. studies of competitive inhibition, Ground Water 29: 239–250.CrossRefGoogle Scholar
  306. Semprini, L., Hopkins, G. D., McCarty, P. L., and Roberts, P. V., 1992, In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions, Environ. Sci. Technol. 26: 2454–2461.CrossRefGoogle Scholar
  307. Sharma, P. K., and McCarty, P. L., 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene, Appl. Environ. Microbiol. 62: 761–765.PubMedGoogle Scholar
  308. Sharma, P. K., and McInerney, M. J., 1994, Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous glass bead chambers, Appl. Environ. Microbiol. 60: 1481–1486.PubMedGoogle Scholar
  309. Shields, M. S., Montgomery, S. O., Chapman, P. J., Cuskey, S. M., and Pritchard, P. H., 1989, Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4, Appl. Environ. Microbiol. 55: 1624–1629.PubMedGoogle Scholar
  310. Silver, S., 1991, Proceedings to the Eighth International Biodeterioration and Biodegradation Symposium (H. Rossmore, ed.), Elsevier, London, pp. 308–339.Google Scholar
  311. Sinclair, J. L., and Ghiorse, W. C., 1987, Distribution of protozoa in subsurface sediments of a pristine groundwater site in Oklahoma, Appl. Environ. Microbiol. 53: 1157–1163.PubMedGoogle Scholar
  312. Sinclair, J. L., and Ghiorse, W. C., 1989, Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments, Geomicrobiology 7: 15–31.CrossRefGoogle Scholar
  313. Sinclair, J. L., Randtke, S. J., Denne, J. E., Hathaway, L. R., and Ghiorse, W. C., 1990, Survey of microbial populations in buried-valley aquifer sediments from northeastern Kansas, Ground Water 28: 369–377.CrossRefGoogle Scholar
  314. Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., Collins, S. P., Wilson, J. T., McNabb, J. F., and White, D. C., 1986, Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination, Can. J. Microbiol. 32:104— 111.Google Scholar
  315. Smith, J. A., Witkowski, P. J., and Chiou, C. T., 1988, Partition of nonionic organic compounds in aquatic systems, Rev. Environ. Contain. Toxicol. 103: 127–151.CrossRefGoogle Scholar
  316. Smith, M., R., 1990, The biodegradation of aromatic hydrocarbons by bacteria, Biodegradation 1: 191–206.PubMedCrossRefGoogle Scholar
  317. Smith, M. R., Ewing, M., and Ratledge. C., 1991, The interactions of various aromatic substrates degraded by Pseudomomas sp. NCIB 10643: synergistic inhibition of growth by two compounds that serve as growth substrates, Appl. Microbiol. Biotechnol. 34: 536–538.CrossRefGoogle Scholar
  318. Smith, R. L., Ceazan, M. L., and Brooks, M. H., 1994, Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for biotransformation of nitrate contamination, Appl. Environ. Microbiol. 60: 1949–1955.PubMedGoogle Scholar
  319. Soares, M. I. M., Belkin, S., and Abeliovich, A., 1988, Biological groundwater denitrification: laboratory studies, Wat. Sci. Tech. 20: 189–195.Google Scholar
  320. Sonier, D. N., Duran, N. L., and Smith, G. B., 1994, Dechlorination of trichlorofluoromethane (CFC-1 I) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds, Appl. Environ. Microbiol. 60: 4567–4572.PubMedGoogle Scholar
  321. Spain, J. C., Van Veld, P. A., Monti, C. A., Pritchard, P. H., and Cripe, C. R., 1984, Comparison of p-nitrophenol biodegradation in field and laboratory test systems, Appt Environ. Microbol. 48: 944–950.Google Scholar
  322. Spain, J. C., Milligan, J. D., Downey, D. C., and Slaughter, J. K., 1989, Excessive bacterial decomposition of H2O, during enhanced biodegradation, Ground Water 27: 163–167.CrossRefGoogle Scholar
  323. Spalding, R. F., and Exnter, M. E., 1993, Occurrence of nitrate in groundwater-a review, J. Environ. Qual. 22: 392–402.CrossRefGoogle Scholar
  324. Spalding, R. F., and Parrott, J. D., 1994, Shallow groundwater denitrification, Sci. Tot. Environ. 141: 17–25.CrossRefGoogle Scholar
  325. Stanlake, G. J., and Finn, R. K., 1982, Isolation and characterization of a pentachlorophenoldegrading bacterium, Appl. Environ. Microbio!. 44: 1421–1427.Google Scholar
  326. Starr, R. C., and Gillham, R. W., 1993, Denitrification and organic carbon availability in two aquifers, Groundwater 31: 934–947.CrossRefGoogle Scholar
  327. Stephen, G. M., and Dalton, H., 1986, The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria, J. Gen. Microbiol. 132: 2453–2462.Google Scholar
  328. Stetzenbach, L. D., Kelley, L. M., and Sinclair, N. A., 1986, Isolation, identification, and growth of well-water bacteria, Ground Water 24: 6–10.CrossRefGoogle Scholar
  329. Strand, S. E., and Shippert, L., 1986, Oxidation of chloroform in an aerobic soil exposed to natural gas, Appl. Environ. Microbio!. 52: 203–205.Google Scholar
  330. Strand, S. E., Bjelland, M. D., and Stensel, H. D., 1990, Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane-oxidizing bacteria, Research Journal WPCF 62: 124–129.Google Scholar
  331. Stucki, G., Krebser, U., and Leisinger, T., 1983, Bacterial growth on 1,2-dichloroethane, Experientia, 39: 366–371.CrossRefGoogle Scholar
  332. Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, John Wiley & Sons, New York.Google Scholar
  333. Suflita, J. M., Gibson, S. A., and Beeman, R. E., 1988, Anaerobic biotransformation of pollutant chemicals in aquifers, J. Indust. Microbio!. 3: 179–194.CrossRefGoogle Scholar
  334. Swindoll, C. M., Aelion, M. C., Dobbins, D. C., Jiang, O., Long, S., and Pfaender, F. K., 1988, Aerobic biodegradation of natural and xenobiotic organic compounds by subsurface microbial communities, Environ. Toxicol. Chem. 7: 291–299.CrossRefGoogle Scholar
  335. Tatara, G. M., Dybas, M. J., and Criddle, C. S., 1993, Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC, Appl. Environ. Microbio!. 59: 2126–2131.Google Scholar
  336. Thiem, S. M., Krumme, M. L., Smith, R. L., and Tiedje, J. M., 1994, Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer, Appl. Environ. Microhiol. 60: 1059–1067.Google Scholar
  337. Thierrin, J., Davis, G. B., Barber, C., Patterson, B. M., Pribac, F., Power, T. R., and Lambert, M., 1993, Natural degradation rates of BTEX compounds and naphthalene in a sulphate reducing groundwater environment, Hydro!. Sci. 38: 309–322.CrossRefGoogle Scholar
  338. Thomas, J. M., and Ward, C. H., 1989, In situ biorestoration of organic contaminants in the subsurface, Environ. Sci. Tech. 23: 760–766.Google Scholar
  339. Thomas, J. M., Lee, M. D., and Ward, C. H., 1987, Use of ground water in an assessment of biodegradation potential in the subsurface, Environ. Toxicol. Chem. 6: 607–614.CrossRefGoogle Scholar
  340. Thomas, J. M., Lee, M. D., Scott, M. J., and Ward, C. H., 1989, Microbial ecology of the subsurface at an abandoned creosote waste site, J. Indus. Microbiol. 4: 109–120.CrossRefGoogle Scholar
  341. Thomas, J. M., Gordy, V. R., Fiorenza, S., and Ward, C. H., 1990, Biodegradation of BTEX in subsurface materials contaminated with gasoline: Granger, Indiana, Wut. Sci. Tech. 20: 53–62.Google Scholar
  342. Thorn, P. M., and Ventullo, R. M., 1988, Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA, Microb. Ecol. 16: 3–16.CrossRefGoogle Scholar
  343. Topp, E., Hanson, R. S., Ringelberg, D. B., White, D. C., and Wheatcroft, R., 1993, Isolation and characterization on an n-methylcarbamate insecticide-degrading methylotrophic bacterium, Appl. Environ. Microhiol. 59: 3339–3349.Google Scholar
  344. Trudell, M. R., Gillham, R. W., and Cherry, J. A., 1986. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer, J. Hydro!. 83: 251–268.CrossRefGoogle Scholar
  345. Tsien, H.-C., Brusseau, G. A., Hanson, R. S., and Wackett, L. P., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55: 3155–3161.PubMedGoogle Scholar
  346. Van Beelen, P., and Van Keulen, F., 1990, The kinetics of the degradation of chloroform and benzene in anaerobic sediment from the river Rhine, Hydrobiol. Bull. 24: 13–21.CrossRefGoogle Scholar
  347. Vannelli, T., Logan, M., Arciero, D. M., and Hooper, A. B., 1990. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbio!. 56: 1169–1171.Google Scholar
  348. Vogel, T. M., 1994, Natural bioremediation of chlorinated solvents, in: Handbook of Bioremediation, ( R. D. Norris, R. F. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson. D. H. Kampbelt, M. Reinhard, E. J. Bouwer, R.C. Borden, T. M. Vogel, J. M. Thomas, C. H. Ward, eds.), Lewis Publishers, Boca Raton, pp. 201–225.Google Scholar
  349. Vogel, T. M., and Grbic-Galic, D., 1986, Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation, Appl. Environ. Microbiol. 52: 200–202.PubMedGoogle Scholar
  350. Vogel, T. M., and McCarty, P. L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, Appl. Environ. Microbiol. 49: 1080–1083.PubMedGoogle Scholar
  351. Vogel, J. C., Talma, A. S., and Heaton, T. H. E., 1981, Gaseous nitrogen as evidence for denitrification in groundwater, J. Hvdrol. 50: 191–200.CrossRefGoogle Scholar
  352. Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21: 722–736.PubMedCrossRefGoogle Scholar
  353. Volkering, F., Breure, A. M., van Andel, J. G., and Rulkens, W. H., 1995, Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons, Appl. Environ. Microbial. 61: 1699–1705.Google Scholar
  354. von Wedel, R. J., Mosquera, J. F., Goldsmith, C. D., Hater, G. R., Wong, A., Fox, T. A., Hunt, W. T., Paules, M. S., Quiros, J. M., and Wiegand, J. W., 1988, Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California, Wat. Sci. Tech. 20: 501–503.Google Scholar
  355. Vroblesky, D. A.. and Chapelle, F. H., 1994, Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation, Water Res. Res. 30: 1561–1570.CrossRefGoogle Scholar
  356. Wackett, L. P., and Gibson, D. T., 1988, Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida Fl, Appl. Environ. Microbiol. 54: 1703–1708.PubMedGoogle Scholar
  357. Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenises: trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbial. 55: 2960–2964.Google Scholar
  358. Walia, S., Kahn, A., and Rosenthal, N., 1990. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments, Appl. Environ. Microbiol. 56: 254–259.PubMedGoogle Scholar
  359. Wan. J., Wilson, J. L., and Kieft, T. L., 1994, Influence of the gas-water interface on transport of microorganisms through unsaturated porous media, Appl. Environ. Microbiol. 60: 509–516.Google Scholar
  360. Water Science and Technology Board, Commission on Engineering and Technical Systems, National Research Council, 1993, In Situ Bioremediation National Academy Press, Washington D.C.Google Scholar
  361. Weber, W. J., and Corseuil, H. X., 1994, Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates, Wat. Res. 28: 1407–1414.CrossRefGoogle Scholar
  362. Weiner, J., and Lovley, D. R., 1997, Stimulation of anaerobic benzene degradation in petroleum-contaminated aquifer sediments with a freshwater benzene-oxidizing, sulfate-reducing inoculum, Appl. Environ. Microbial. (submitted).Google Scholar
  363. Werner, P., 1985. A new way for the decontamination of polluted aquifers by biodegradation, Wat. Supply 3: 41–47.Google Scholar
  364. Werner, P., 1991, German experiences in the biodegradation of creosote and gas work-specific substances, in: In Situ Bioreclamation, ( E. R. Hinchee, and R. F. Olfenbuttel, eds.), Butterworth-Heinemann, Stoneham, MA, pp. 539.Google Scholar
  365. Westrick, J. J., Mello, J. W., and Thomas, R. F., 1984, The groundwater supply survey, J. Am. Water Works Assoc. 76: 52–59.Google Scholar
  366. White, D. C., Smith, G. A., Gehron, M. J., Parker, J. H., Findlay, R. H., Martz, R. F. Frederickson, H. L., 1983, The ground water aquifer microbiota: biomass, community structure, and nutritional status, Develop. Indus. Microbial. 24: 189–199.Google Scholar
  367. Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in: Biology of Anaerobic Microorganisms, ( A. J. B. Zehnder, ed., John Wiley & Sons, New York, pp. 469–585.Google Scholar
  368. Williams, G. M., Smith, B., and Ross, C. A. M., 1991, The migration and degradation of waste organic compounds in groundwater, Adv. Org. Geochem. 19: 531–543.CrossRefGoogle Scholar
  369. Wilson, J. T., and Wilson, B. H., 1985, Biotransformation of trichlororethylene in soil, Appl. Environ. Microbiol. 49: 242–243.Google Scholar
  370. Wilson, J. T., McNabb, J. F., Balkwill, D. L., and Ghiorse, W. C., 1983, Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer, Ground Water 21: 134–142.CrossRefGoogle Scholar
  371. Wilson, B., Smith, G. B., and Rees, J. F., 1986, Biotransformation of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study, Environ. Sci. Technol. 20: 997–1002.CrossRefGoogle Scholar
  372. Wilson, B. H., Wilson, J. T., Kampbell, D. H., Bledsoe, B. E., and Armstrong, J. M., 1990a, Biotransformation of monoaromatic and chlorinated hydrocarbons at an aviation gasoline spill site, Geomicrobiol. J. 8: 225–240.CrossRefGoogle Scholar
  373. Wilson, G. B., Andrews, J. N., and Bath, A. H., 1990b, Dissolved gas evidence for denitrification in the Lincolnshire groundwaters, Eastern England, J. Hydrol. 113: 51–60.CrossRefGoogle Scholar
  374. Wilson, J. T., Armstrong, J. M., and Rafai, H. S., 1994, A full-scale field demonstration on the use of hydrogen peroxide for in situ bioremediation of an aviation gasoline-contaminated aquifer, in: Bioremediation Field Experience, ( E. P. Flathman, E. D. Ferger, and H. J. Exner, eds.), Lewis Publishers, Boca Raton, pp. 333–359.Google Scholar
  375. Woods, N. R., and Murrell, J. C., 1989, The metabolism of propane in Rhodococcus rhodochrous PNKbI, J. Gen. Microbiol. 135: 2335–2344.Google Scholar
  376. Wyndham, R. C., Nakatsu, C., Peel, M., Cashore, A., Ng, J., and Szilagyi, F., 1994, Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system, Appl. Environ. Microbiol. 60: 86–93.Google Scholar
  377. Zeyer, J., Kuhn, E. P., and Schwarzenbach, R. P., 1986, Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen, Appl. Environ. Microbiol. 52: 944–947.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert T. Anderson
    • 1
  • Derek R. Lovley
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations