Mahoney Lake: A Case Study of the Ecological Significance of Phototrophic Sulfur Bacteria

  • Jörg Overmann
Part of the Advances in Microbial Ecology book series (AMIE, volume 15)


Phototrophic sulfur bacteria require light as an energy source and reduced inorganic sulfur compounds as electron-donating substrates for growth. Dense accumulations of these bacteria can develop where light reaches sulfide-containing layers of stratified water bodies and sediments. Frequently, such blooms are visible with the naked eye as purple to pink, peach, brown, or green layers. If they occur in the water column of lakes, such “bacterial plates” can extend over a depth of several meters (Takahashi and Ichimura, 1968; Biebl and Pfennig, 1979; Parkin and Brock, 1980b; Guerrero et al., 1985; Gorlenko, 1988). In sediments, the gradients of light intensity and sulfide concentration are much steeper (Jørgensen and Revsbech, 1983; van Gemerden et al., 1989; Visscher et al., 1990) and, as a result, the layers of phototrophic sulfur bacteria are only millimeters to centimeters thick (Nicholson et al., 1987; van Gemerden et al., 1989).


Sulfate Reduction Oxygenic Photosynthesis Green Sulfur Bacterium Phototrophic Bacterium Sulfur Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, A. L., Baker, K. K., and Tyler, P. A., 1985, A family of pneumatically-operated thin layer samplers for replicate sampling of heterogenous water columns, Hydrobiologia 22: 107–211.Google Scholar
  2. Biebl, H., and Pfennig, N., 1979, Anaerobic CO, uptake by phototrophic bacteria. A review, Arch. Hydrobiol. Beih. Ergeb. Limnol. 12: 48–58.Google Scholar
  3. Brown, S. R., McIntosh, H. J., and Smol, J. P., 1984, Recent paleolimnology of a meromictic lake: Fossil pigments of photosynthetic bacteria, Verh. Int. Ver. Limnol. 22: 1357–1360.Google Scholar
  4. Caumette, P., Pagano, M., and Saint-Jean, L., 1983, Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Langune Ebrié, Cote d’Ivoire). Relations trophiques, Hydrobiologia 106: 135–148.CrossRefGoogle Scholar
  5. Cho, B. C., Azam, F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser. 63: 253–259.CrossRefGoogle Scholar
  6. Chróst, R. J., 1991, Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, in: Microbial Enzymes in Aquatic Environments ( R. J. Chróst, ed.), Springer, New York, pp. 29–59.CrossRefGoogle Scholar
  7. Cloern, J. E., Cole, B. E., and Oremland, R. S., 1983, Autotrophic processes in meromictic Big Soda Lake, Nevada, Limnol. Oceanogr. 28: 1049–1061.CrossRefGoogle Scholar
  8. Cloern, J. E., Cole, B. E., and Wienke, S. M., 1987, Big Soda Lake (Nevada). 4. Vertical fluxes of particulate matter: seasonality and variations across the chemocline, Limnol. Oceanogr. 32: 815–824.CrossRefGoogle Scholar
  9. Cohen, Y., Krumbein, W. E., and Shilo, M., 1977, Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr. 22: 609–620.Google Scholar
  10. Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol. Prag. Ser. 43: 1–10.CrossRefGoogle Scholar
  11. Culver, D. A., and Brunskill, G. J., 1969, Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake, Limnol. Oceanogr. 14: 862–873.CrossRefGoogle Scholar
  12. Czeczuga, B., and Gradzki, F., 1973, Relation between extracellular and cellular production in the sulfuric green bacterium Chlorobium limicola Nads. as compared to primary production of phytoplankton, Hydrohiologia 42: 85–95.CrossRefGoogle Scholar
  13. Drews, G., 1985, Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria, Microbiol. Rev. 49: 59–70.PubMedGoogle Scholar
  14. Eichler, B., and Pfennig, N., 1990, Seasonal development of anoxygenic phototrophic bacteria in a holomictic drumlin lake (Schleinsee, F. R. G.), Arch. Hvdrobiol. 119: 369–392.Google Scholar
  15. Fowler, C. F., Nugent, N. A., and Fuller, R. C., 1971, The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica, Proc. Natl. Acad. Sci. USA 68: 2278–2282.PubMedCrossRefGoogle Scholar
  16. Fründ, C., and Cohen, Y., 1992, Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats, Appl. Environ. Microbiol. 58: 70–77.Google Scholar
  17. Fry, B., 1986, Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State, Limnol Oceanogr. 31: 79–88.PubMedCrossRefGoogle Scholar
  18. Gorlenko, V. M., 1988, Ecological niches of green sulfur and gliding bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stakebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 257–267.CrossRefGoogle Scholar
  19. Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I., 1983, The ecology of aquatic microorganisms, in: Die Binnengewässer, Bd. 28, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  20. Grant, W. D., and Tindall, B. J., 1986, The alkaline saline environment, in: Microbes in Extreme Environments, ( R. A. Herbert, and G. A. Codd, eds.) Academic Press, London, pp. 25–54.Google Scholar
  21. Guerrero, R., Montesinos, E., Pedrós-Alió, C., Esteve, I., Mas, J., van Gemerden, H., Hofman P. A. G., and Bakker, J. F., 1985, Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors, Limnol. Oceanogr. 30: 919–931.CrossRefGoogle Scholar
  22. Guerrero, R., Pedrós-Alió, C., Esteve, I., and Mas, J., 1987, Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region, Acta Academiae Aboensis 47: 125–151.Google Scholar
  23. Hall, K. J., and Northcote, T. G., 1986, A novel terrestrial—freshwater linkage: Robin predation on damselfly nymphs, Discovery (Canada) 15: 107–109.Google Scholar
  24. Hall, K. J., and Northcote, T. G., 1990, Production and decomposition processes in a saline meromictic lake, Hydrobiologia 197: 115–128.CrossRefGoogle Scholar
  25. Hammer, T. U., 1978, The saline lakes of Saskatchewan III. chemical characterization, Int. Rev. Ges. Hydrobiol. 63: 311–335.CrossRefGoogle Scholar
  26. Hammer, T. U., 1986, Saline lake ecosystems of the world, Monographiae Biologicae, Vol. 59, W. Junk Publishers, Dordrecht.Google Scholar
  27. Heinrichs, M. L., 1995, Chironomid-based paleosalinity reconstruction of three lakes in the south-central interior of British Columbia, Canada. M. Sc. thesis, Simon Fraser University, Vancouver, Canada.Google Scholar
  28. Javor, B., 1983, Planktonic standing crop and nutrients in a saltern ecosystem, Limnol. Oceanogr. 28: 153–159.Google Scholar
  29. Javor, B., 1984, Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements, Appl. Environ. Microbiol. 48: 352–360.Google Scholar
  30. Javor, B., 1989, Hypersaline environments, Brock/Springer Series in Contemporary Bioscience. Springer, Berlin.Google Scholar
  31. Jørgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, Geomicrobiol. J. 1: 49–64.CrossRefGoogle Scholar
  32. Jørgensen, B. B., 1982, Ecology of the bacteria of the sulphur cycle with special reference to anoxicoxic interface environments, Phil. Trans. R. Soc. Lond. B 298: 543–561.CrossRefGoogle Scholar
  33. Jørgensen, B. B., and Cohen, Y., 1977, Solar Lake (Sinai). 5. The sulfur cycle of the benthic microbial mats, Limnol. Oceanogr. 22: 657–666.CrossRefGoogle Scholar
  34. Jørgensen, B. B., and Revsbech, N.P., 1983, Colorless sulfur bacteria, Beggiatoa spp. And Thiovulum spp., in O, and H,S microgradients, Appl. Environ. Microbiol. 45: 1261–1270.Google Scholar
  35. Jørgensen, B. B., Kuenen, J. G., and Cohen, Y., 1979, Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai), Limnol. Oceanogr. 24: 799–822.CrossRefGoogle Scholar
  36. Karl, D. M., and Knauer, G. A., 1991, Microbial production and particle flux in the upper 350 m of the Black Sea, Deep-Sea Res. 38: S921 — S942.CrossRefGoogle Scholar
  37. Lawrence, J. R., Haynes, R. C., and Hammer, U. T., 1978, Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake, Verh. Int. Ver. Limnol. 20: 201–207.Google Scholar
  38. Leavitt, P. R., and Carpenter, S. R., 1990, Aphotic pigment degradation in the hypolimnion: Implications for sedimentation studies and paleolimnology, Limnol. Oceanogr. 35: 520–534.CrossRefGoogle Scholar
  39. Lowe, D. J., Green, J. D., Northcote, T. G., and Hall, K. J., 1997, Fluctuating levels of a meromictic lake: evidence for Holocene climate flickering, J. Quaternary Sciences (in review).Google Scholar
  40. Mas, J., Pedrós-Alió, C., and Guerrero, R., 1990, In situ specific loss and growth rates of purple sulfur bacteria in Lake Cisó, FEMS Microbiol. Ecol. 73: 271–281.Google Scholar
  41. Montesinos, E., Guerrero, R., Abella, C., and Esteve, I., 1983, Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats, Appt Environ. Microbiol. 46: 1007–1016.Google Scholar
  42. Morris, D. P., and Lewis, W. M., 1992, Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado, Limnol, Oceanogr. 37: 1179–1192.Google Scholar
  43. Nicholson, J. A. M., Stolz, J. F., and Pierson, B. K., 1987, Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts, FEMS Microbiol. Ecol. 45: 343–364.CrossRefGoogle Scholar
  44. Northcote, T. G., and Hall, K. J., 1983, Limnological contrasts and anomalies in two adjacent saline lakes, Hydrobiologia 105: 179–194.CrossRefGoogle Scholar
  45. Northcote, T. G., and Hall, K. J., 1990, Vernal microstratification patterns in a meromictic saline lake: Their causes and biological significance, Hydrobiologia 197: 105–114.CrossRefGoogle Scholar
  46. Northcote, T. G., and Halsey, T. G., 1969, Seasonal changes in the limnology of some meromictic lakes in southern British Columbia, J. Fish. Res. Bd. Canada 26: 1763–1787.CrossRefGoogle Scholar
  47. Oren, A., 1983, Population dynamics of halobacteria in the Dead Sea water column, Limnol. Oceanogr. 28: 1094–1103.CrossRefGoogle Scholar
  48. Overmann, J., and Pfennig, N., 1992, Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake, FEMS Microbiol. Ecol. 101: 67–79.Google Scholar
  49. Overmann, J. and Tilzer, M. M., 1989, Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake (Mittlerer Buchensee, West Germany), Aqual. Sci. 51: 261–278.CrossRefGoogle Scholar
  50. Overmann, J., Beatty, J. T., Hall, K. J., Pfennig, N., and Northcote, T. G., 1991, Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake, Limnol. Oceanogr. 36: 846–859.CrossRefGoogle Scholar
  51. Overmann, J., Cypionka, H., and Pfennig, N., 1992a, An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea, Limnol. Oceanogr. 37: 150–155.CrossRefGoogle Scholar
  52. Overmann, J., Fischer, U., and Pfennig, N., 1992b, A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and spec. nov, Arch. Microbiol. 157: 329–335.CrossRefGoogle Scholar
  53. Overmans, J., Sandmann, G., Hall, K. J., and Northcote, T. G., 1993, Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada, Aquatic Sciences 55: 31–39.CrossRefGoogle Scholar
  54. Overmann, J., Beatty, J. T., and Hall, K. J., 1994, Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake, FEMS Microbiol. Ecol. 15: 309–320.CrossRefGoogle Scholar
  55. Overmann, J., Beatty, J. T., Krouse, H. R., and Hall, K. J., 1996a, The sulfur cycle in the chemocline of a meromictic salt lake, Limnol. Oceanogr. 41: 147–156.CrossRefGoogle Scholar
  56. Overmann, J., Beatty, J. T., and Hall, K. J., 1996b, Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake, Appl. Environ. Microbiol. 62: 3251–3258.PubMedGoogle Scholar
  57. Parkin, T. B., and Brock, T. D., 1980a, The effects of light quality of phototrophic bacteria in lakes. Arch. Microbiol. 125: 19–27.CrossRefGoogle Scholar
  58. Parkin, T. B., and Brock, T. D., 1980b, Photosynthetic bacterial production in lakes: The effects of light intensity, Limnol. Oceanogr. 25: 711–718.CrossRefGoogle Scholar
  59. Parkin, T. B., and Brock, T. D., 198la, Photosynthetic bacterial production and carbon mineralization in a meromictic lake, Arch. Hvdrohiol. 91: 366–382.Google Scholar
  60. Parkin, T. B., and Brock, T. D., 1981 b, The role of phototrophic bacteria in the sulfur cycle of a meromictic lake, Limnol. Oceanogr. 26: 880–890.Google Scholar
  61. Pfennig, N., 1978, General physiology and ecology of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. K. Clayton, and W. R. Sistrom, eds.) Plenum Press, New York, pp. 3–18.Google Scholar
  62. Pfennig, N., and Biebl, H., 1976, Desulfúromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110: 3–12.Google Scholar
  63. Scudder, G. G. E., 1969, The fauna of saline lakes on the Fraser Plateau in British Columbia, Verh. Internat. Verein. Limnol. 17: 430–439.Google Scholar
  64. Scudder, G. G. E., 1983, A review of factors governing the distribution of two closely related corixids in the saline lakes of British Columbia, Hydrobiologia 105: 143–154.CrossRefGoogle Scholar
  65. Shiah, F.-K., and Ducklow, H. W., 1994, Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay, Limnol. Oceanogr. 39: 1243–1258.CrossRefGoogle Scholar
  66. Skyring, G. W., and Bauld, J., 1990, Microbial mats in coastal environments, in: Advances in Microbial Ecology Vol. I1, ( K. C. Marshall, ed.), Plenum Press, New York, pp. 461–498.CrossRefGoogle Scholar
  67. Smith, R. L., and Oremland, R. S., 1987, Big Soda Lake (Nevada). 2. Pelagic sulfate reduction, Limnol. Oceanogr. 32: 794–803.CrossRefGoogle Scholar
  68. Sorokin, Yu. I., 1970, Interrelations between sulphur and carbon turnover in meromictic lakes, Arch Hydrobiol. 66: 391–446.Google Scholar
  69. Steenbergen, C. L. M., 1982, Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten, Hydrobiologia 95: 59–64.CrossRefGoogle Scholar
  70. Takahashi, M., and Ichimura, S., 1968, Vertical distribution of organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr. 13: 644–655.CrossRefGoogle Scholar
  71. Thienemann, A., 1925, Die Binnengewässer Mitteleuropas, in: Die Binnengewässer, Vol. 1, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  72. Gemerden, H., 1967, On the bacterial sulfur cycle of inland waters, Ph. D. thesis, Rijksuniversiteit, Leiden.Google Scholar
  73. Gemerden, H., 1968, Growth measurement of Chromatium cultures. Arch. Mikrohiol. 64: 103–110.CrossRefGoogle Scholar
  74. Gemerden, H., and Mas, J., 1995, Ecology of purple sulfur bacteria. In: Anoxygenic Photosynthetic Bacteria ( R. E. Blankenship, M. T. Madigan, and C. E. Bauer, eds.), Kluwer Academic Publishers, Boston, pp. 49–85.Google Scholar
  75. Gemerden, H., Montesinos, E., Mas, J., and Guerrero, R., 1985, Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cis (Spain), Limnol. Oceanogr. 30: 932–943.CrossRefGoogle Scholar
  76. Gemerden, H., Tughan C. S., de Wit, R., and Herbert R. A., 1989, Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands, FEMS Microbiol. Ecol. 62: 87–102.CrossRefGoogle Scholar
  77. Visscher, P. T., Nijburg, J. W., and van Gemerden, H., 1990, Polysulfide utilization by Thiocapsa roseopersicina, Arch. Microbiol. 155: 75–81.CrossRefGoogle Scholar
  78. Waiser, M. J., and Robarts, R. D., 1995, Microbial nutrient limitation in prairie saline lakes with high sulfate concentrations, Limnol. Oceanogr. 40: 566–574.CrossRefGoogle Scholar
  79. Wetzel, R. G., 1983, Limnology, 2nd edition, Saunders, New York.Google Scholar
  80. Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), John Wiley and Sons, New York, pp. 469–585.Google Scholar
  81. Zehr, J. P., Harvey, R. W., Oremland, R. S., Cloern, J. E., and George, L. H., 1987, Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass, Limnol. Oceanogr. 32: 781–793.CrossRefGoogle Scholar
  82. Züllig, H., 1985, Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung, Schweiz. Z. Hydro!. 47: 87–126.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jörg Overmann
    • 1
  1. 1.Institut für Chemie und Biologie des MeeresUniversität OldenburgOldenburgGermany

Personalised recommendations