Skip to main content

Do Bacterial Communities Transcend Darwinism?

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 15))

Abstract

Until the development of fluorescent molecular probes and confocal laser microscopy, there were few alternatives to isolating microorganisms from their communities prior to laboratory study. Isolation was necessary to obtain a sufficient amount of homogeneous cell material for chemical analyses, yet it constrained most laboratory work to the molecular, cellular, or organismal level. However, fluorescent probes and other molecular techniques now allow the analysis of individual microorganisms without isolation (Olsen et al., 1986; Pace et al., 1986; Caldwell et al., 1992a). This affords the opportunity to perform community-level laboratory experiments that are not possible with plants and animals due to their large size. However, inconsistencies between evolutionary ecology (Mayr, 1993; Krassilov, 1994; Kauffman, 1993, 1995), ecosystem ecology (Maynard-Smith, 1991; Loehle and Pechman, 1988; Schulze and Mooney, 1993), microbial ecology (Margulis, 1990; Caldwell, 1993; Caldwell and Costerton, 1996), germ theory (Caldwell, 1995; Caldwell et al., 1997a), and information theory (Rasmussen, 1988, 1991; Rasmussen et al., 1990; Yockey, 1990, 1995; Kelly, 1994) make it difficult to formulate testable hypotheses that are relevant in understanding ecology at the community level. Consideration of communities as units of proliferation (and hence as units of evolution) requires a more generalized theory of life, amenable to the formulation of community-level hypotheses and tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian, V., and Hale, M. E., 1973, The Lichens, Academic Press, London.

    Google Scholar 

  • Ahring, B. K., and Westermann, P., 1987, Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria, Appl. Environ. Microbiol. 53: 429–433.

    PubMed  CAS  Google Scholar 

  • Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1992, Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones, Appl. Environ. Microbiol. 58: 961–968.

    PubMed  CAS  Google Scholar 

  • Alldredge, A. L., and Cohen, Y., 1987, Can microscale chemical patches persist at sea? Micro-electrode study of marine snow, fecal pellets, Science 235: 689–91.

    PubMed  CAS  Google Scholar 

  • Allison, D. G., and Sutherland, I. W., 1987, The role of expolysaccharides in adhesion of freshwater bacteria, J. Gen. Microbiol. 133: 1319–1327.

    CAS  Google Scholar 

  • Amann, R. I., Krumholz, L., and Stahl, D. A., 1990, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172: 762–770.

    PubMed  CAS  Google Scholar 

  • Amann, R. I., Springer, N., Ludwig, W., Gortz, H. D., and Schleifer, K. H., 1991, Identification and phylogeny of uncultured bacterial endosymbionts, Nature (London) 351: 161–165.

    CAS  Google Scholar 

  • Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., 1992, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol. 58: 614–623.

    PubMed  CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., and Schleifer, K. H., 1994, Identification of uncultured bacteria: a challenging task for molecular taxonomists, ASM News 60: 360–365.

    Google Scholar 

  • Aoki, K., 1982, Additive polygenic formulation of Hamilton’s model of kin selection, Heredity 49: 163–170.

    Google Scholar 

  • Aoki, K., 1986, Stable polymorphic equilibria in a toy model of group selection, Japan. J. Genet. 61: 481–490.

    Google Scholar 

  • Aviles, L. 1986, Sex-ratio bias and possible group selection in the social spider, Amer. Nat. 128: 112.

    Google Scholar 

  • Back, J. P., and Kroll, R. G., 1991, The differential fluorescence of bacteria stained with acridine orange and the effects of heat, J. Appl. Bacteriol. 71: 51–58.

    PubMed  CAS  Google Scholar 

  • Bagley, D. M., and Gossett, J. M., 1995, Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227, Appl. Environ. Microbiol. 61: 3195–3201.

    PubMed  CAS  Google Scholar 

  • Batra, S. W. T., and Batra, L. R., 1967, The fungus gardens of insects, Sci. Amer. 217: 112–120.

    Google Scholar 

  • Beijerinck, M. W., 1889, Auxanography, a method useful in microbiological research, involving diffusion in gelatin, Archives Neerlandaises des Sciences Exactes et Naturelles Haarlem 23: 367–372.

    Google Scholar 

  • Beijerinck, M. W., 1901, Enrichment culture studies with urea bacteria, Centralblatt f. Bakteriologie Part 117: 33–61.

    Google Scholar 

  • Betts, R. P., Bankes, P., and Banks, J. G., 1989, Rapid enumerations of viable micro-organisms by staining and direct microscopy, Lett. Appl. Microbiol. 9: 199–202.

    Google Scholar 

  • Beurskens, J. E. M., Dekker, C. G. C., Van Den Heuvel, H., Swart, M., De Wolf, J., 1994, Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamically most favorable reactions, Environ. Sci. Technol. 28: 701–706.

    PubMed  CAS  Google Scholar 

  • Bhatnagar, L., and Fathepure, B. Z., 1991, Mixed cultures in detoxification of hazardous waste, in: Mixed Cultures in Biotechnology ( J. G. Zeikus, and E. A. Johnson, eds.) McGraw-Hill, New York, pp. 293–340.

    Google Scholar 

  • Bochem, H. P., Schoberth, S. M., Sprey, B., and Wengler, P., 1982, Thermophilic biomethanation of acetic acid: morphology and ultrastructure of a granular consortium, Can. J. Microbiol. 28: 500–510.

    Google Scholar 

  • Bochner, B., 1989, “Breathprints” at the microbial level, ASM News 55:536–539.

    Google Scholar 

  • Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers Hz and formate in methanogenic ecosystems and its implications in the measurement of K0, for H2 and formate uptake, Appl. Environ. Microbiol. 55: 1735–1741.

    PubMed  CAS  Google Scholar 

  • Bottomley, P. J., and Maggard, S. P., 1990, Determination of viability within serotypes of a soil population of Rhizobium leguminosarum by. trifolii, Appl. Environ. Microbiol. 56: 533–540.

    PubMed  CAS  Google Scholar 

  • Bouwer, H., 1989, Transformations of xenobiotics in biofilms, in: Structure And Function Of Biofilms ( W. G. Characklis and P. H. Wilderer, eds.), John Wiley and Sons, Toronto, pp. 251–267.

    Google Scholar 

  • Bradshaw, D. J., McKee, A. S., and Marsh, P. D., 1989, Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro, J. Dent. Res. 68: 1298–1302.

    PubMed  CAS  Google Scholar 

  • Brakenhoff, G. J., van der Voort, H. T. M., Baarslag, M. W., Mans, B., Oud, J. L., Zwart, R., and van Driel, R., 1988, Visualization and analysis techniques for three dimensional information acquired by confocal microscopy, Scanning Microsc. 2: 1831–1838.

    PubMed  CAS  Google Scholar 

  • Brannan, D. K., 1995, Cosmetic preservation, J. Soc. Cosmet. Chem. 46: 199–220.

    CAS  Google Scholar 

  • Brayton, P. R., Tamplin, M. L., Huq, A., and Colwell, R. R., 1987, Enumeration of Vibrio cholerae 01 in Bangladesh waters by fluorescent-antibody direct viable count, Appl. nviron. Microbiol. 53: 2862–2865.

    CAS  Google Scholar 

  • Brefeld, O., 1881, Botanische Untersuchungen uber Schimmelpilze: Culturemethoden, Leipzig. Bremer, P. J., and Geesey, G. G., 1991, Laboratory-based model of microbiologically induced corrosion of copper, Appl. Environ. Microbiol. 57: 1956–1962.

    Google Scholar 

  • Brock, T. D., and Madigan, M., 1988, The Biology of Microorganisms, Prentice-Hall, New Jersey. Brown, M. J., and Lester, J. N., 1982, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge-I, Water Res. 16: 1539–1548.

    Google Scholar 

  • Brown, M. R. W., Allison, D. G., and Gilbert, G., 1988, Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?, J. Antimicrob. Chemother. 22: 777–780.

    PubMed  CAS  Google Scholar 

  • Brown, S. W., and Oliver, S. G., 1982, Isolation of ethanol-tolerant mutants of yeast by continuous culture selection, Eur. J. Appl. Microbiol. Biotechnol. 16: 119–122.

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59: 20–31.

    CAS  Google Scholar 

  • Bryers, J. D., 1993, The biotechnology of interfaces, J. Appl. Bact. Symp. Suppl. 74: 98S - 109S.

    Google Scholar 

  • Bungay, H. R., 1995, A challenge for modelling mutualism, Binary: Computing in Microbiology. 7: 100–102.

    Google Scholar 

  • Busscher, H. J., Bellon-Fontaine, M.-N., Mozes, N., Van Der Mei, H. C., Sjoflema, J., Cerf, O., and Rouxhet, P. G., 1990, Deposition of Leuconostoc mesenteroides and Streptococcus thermophilus to solid substrata in a parallel plate flow cell, Biofouling 2: 55–63.

    Google Scholar 

  • Caldwell, D. E., 1993, The microstat: Steady-state microenvironments for subculture of steady-state consortia, communities, and microecosystems, in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 123–128.

    Google Scholar 

  • Caldwell, D. E., 1995, Cultivation and Study of Biofilm Communities. in: Microbial Biofilms, (H. M. Lappin-Scott and J. W. Costerton, eds), Cambridge University Press, Cambridge, pp. 6479.

    Google Scholar 

  • Caldwell, D. E., and Costerton, J. W., 1996. Are bacterial biofilms constrained to Darwin’s concept of evolution through natural selection? Microbiologia SEM 12: 347–358.

    CAS  Google Scholar 

  • Caldwell, D. E., and Germida, J. J., 1985, Evaluation of difference imagery for visualizing and quantitating microbial growth, Canad. J. Microbiol. 31: 35–44.

    Google Scholar 

  • Caldwell, D. E., and Hirsch, P., 1973, Growth of microorganisms in two-dimensional steady-state diffusion gradients, Can. J. Microbiol. 19: 53–58.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. E., and Lawrence, J. R., 1986, Growth kinetics of Pseudomonas fuorescens micro-colonies within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 2: 299–312.

    Google Scholar 

  • Caaldwell, D. E., and Lawrence, J. R., 1988, Study of attached cells in continuous-flow slide culture, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 117–138.

    Google Scholar 

  • Caldwell, D. E., and Lawrence, J. R., 1989, Microbial growth and behavior within surface microenvironments, in: Proceedings of ISME-5 ( T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), JSS Press, Tokyo, pp. 140–145.

    Google Scholar 

  • Caldwell, D. E., Lai, S. H., and Tiedje, J. M., 1973, A two-dimensional steady-state diffusion gradient for ecological studies, in: Modern Methods in Microbial Ecology (Thomas Rosswall, ed.), Bull. Ecol. Res. Comm. ( Stockholm ) 17: 151–158.

    Google Scholar 

  • Caldwell, D. E., Caldwell, S. J., and Tiedje, J. M., 1975, An ecological study of sulfur-oxidizing bacteria from the littoral zone of a Michigan lake and a sulfur spring in Florida, Plant and Soil 43: 101–114.

    Google Scholar 

  • Caldwell, D. E., Brierley, J. A., and Brierley, C. L., 1985, Planetary Ecology, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Caldwell, D. E., Korber, D. R. and Lawrence, J. R., 1992a, Confocal Laser Microscopy and Computer Image Analysis, in: Advances in Microbial Ecology Vol. 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 1–67.

    Google Scholar 

  • Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1992b, Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy, J. Microbiol. Methods 15: 249–261.

    Google Scholar 

  • Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1993, Analysis of Biofilm Formation Using 2-D Versus 3-D Digital Imaging, in: Microbial Cell Envelopes: Interactions and Biofilms ( L. B. Quesnel, P. Gilbert, and P. S. Handley, eds), Blackwell Scientific, Oxford, pp. 52–66S.

    Google Scholar 

  • Caldwell, D. E., Atuku, E., Wilkie, D. C., Wivcharuk, K. P., Karthikeyan, S., Korber, D. R., Schmid, D. R., and Wolfaardt, G. M., 1997a, Germ theory versus community theory in understanding and controlling the proliferation of biofilms, Adv. Dental Res. 11: 4–13.

    CAS  Google Scholar 

  • Caldwell, D. E., Wolfaardt, G. M., Korber, D. R., and Lawrence, J. R., 1997b, Cultivation of microbial consortia and communities, in: Manual of Environmental Microbiology (C. J. Hurst, G. R. Knudsen, M. J. Mclnemey, L. D. Stetzenbach, M. V. Walter, American Society of Microbiology Press, Washington, D.C., pp. 79–90.

    Google Scholar 

  • Characklis, W. G., 1988, Model biofilm reactors, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. I ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 155–174.

    Google Scholar 

  • Characklis, W. G., McFeters, G. A. and Marshall, K. C., 1990, Physicological ecology in biofilm systems, in: Biofilms ( W. G. Characklis and K. C. Marshall, eds.), J. Wiley and Sons, New York, pp. 341–393.

    Google Scholar 

  • Chartrain, M., and Zeikus, J. G., 1986a, Microbial ecophysiology of whey biomethanation: Intermediary metabolism of lactose degradation in continuous culture, Appl. Environ. Microbiol. 51: 180–187.

    PubMed  CAS  Google Scholar 

  • Chartrain, M., and Zeikus, J. G., 1986b, Microbial ecophysiology of whey biomethanation: Characterization of bacterial trophic populations and prevalent species in continuous culture, Appl. Environ. Microbiol. 51: 188–196.

    PubMed  CAS  Google Scholar 

  • Chartrain, M., L. Bhatnagar, and Zeikus, J. G. 1987, Microbial ecophysiology of whey biomethanation: Comparison of carbon transformation parameters, species composition, and starter culture performance in continuous culture, Appl. Environ. Microbiol. 53: 1147–1156.

    PubMed  CAS  Google Scholar 

  • Christersson, C. E., Glantz, P-O. J., and Baier, R. E., 1988, Role of temperature and shear forces on microbial detachment, Scand. J. Dent. Res. 96: 91–98.

    PubMed  CAS  Google Scholar 

  • Claasen, P. A. M., Korstee, G. J. J., Ossterveld Van Vliet, W. M., and Van Neerven, A. R. W., 1986, Colonial heterogeneity of Thiobacillus, J. Bacteriol. 168: 791–794.

    Google Scholar 

  • Conrad, R., T. J., Phelps, and Zeikus, J. G., 1985, Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments, Appl. Environ. Microbiol. 50: 595–601.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Geesey, G. G., and Cheng, K.-J., 1978, How bacteria stick, Sci. Am. 238: 86–95.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. E., Korber, D. R., and James, G. A., 1994, Biofilms: the customized microniche, J. Bacteriol. 176: 2137–2142.

    PubMed  CAS  Google Scholar 

  • Daley, R. J., 1979, Direct epifluorescence enumeration of native aquatic bacteria: Uses, limitations, and comparative accuracy, in: Native Aquatic Bacteria: Enumeration, Activity, and Ecology, STP 695 ( J. W. Costerton and R. R. Colwell, eds.), American Society for Testing and Materials, New York, pp. 29–45.

    Google Scholar 

  • Damuth, J. 1985, Selection among species. A formulation in terms of natural functional units, Evolution 39: 1132–1146.

    Google Scholar 

  • Darwin, C., 1859, The Origin of Species By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, New American Library, New York.

    Google Scholar 

  • Darwin, C., 1868, The Variation of Animals and Plants Under Domestication. Vol. 2, Organe Judd, New York, p. 204.

    Google Scholar 

  • Dawson, K. A., Allison, M. J., and Hartman, P. A. 1980, Characteristics of anaerobic oxalate degrading enrichment cultures from the rumen, Appl. Environ. Microbiol. 40: 840–846.

    PubMed  CAS  Google Scholar 

  • Beer, D., Stoodley, P., Roe, F., and Lewandowski, Z., 1994, Effect of biofilm structures on oxygen distribution and mass transport, Biotechnol. Bioeng. 43: 1131–1138.

    PubMed  Google Scholar 

  • DeLong, E. F., Wickham, G. S., and Pace, N. R., 1989, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells, Science 243: 1360–1363.

    PubMed  CAS  Google Scholar 

  • Dietrich, G., and Winter, J. 1990, Anaerobic degradation of chlorophenol by an enrichment culture, Appl. Environ. Microbiol. 34: 253–258.

    CAS  Google Scholar 

  • Distefano, T. D., Gossett, J. M., and Zinder, S. H., 1991, Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis, Appl. Environ. Microbiol. 57: 2287–2292.

    PubMed  CAS  Google Scholar 

  • Dolfing, J., and Beurskens, J. E. M., 1995, The microbial logic and environmental significance of reductive dehalogenation, Adv. Microb. Ecol. 14: 188.

    Google Scholar 

  • Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm, and genome evolution, Nature (London) 284: 601–603.

    CAS  Google Scholar 

  • Drake, J. W., 1970, The Molecular Basis of Mutation, Holden-Day, San Francisco, pp. 39–62.

    Google Scholar 

  • Dunbar, M. J., 1971, Higher levels of organization, the evolution of stability in marine environments: natural selection at the level of the ecosystem, in: Group Selection ( G. C. Williams, ed.), Aldine Atherton, Chicago, pp. 120–139.

    Google Scholar 

  • Dworkin, M., 1985, The myxobacteria, in: Developmental Biology of the Bacteria ( M. Dworkin, ed.), Benjamin/Cummings, Menlo Park, CA, pp. 105–149.

    Google Scholar 

  • Dworkin, M., and Kaiser, D., 1985, Cell interactions in myxobacterial growth and development, Science 230: 18–24.

    PubMed  CAS  Google Scholar 

  • Emerson, D., Worden, R. M., and Breznak, J. A., 1994, A diffusion gradient chamber for studying microbial behavior and separating organisms, Appl. Environ. Microbiol. 60: 1269–1278.

    PubMed  CAS  Google Scholar 

  • Emerson, R. W., 1841, The Method of Nature: An Oration Delivered Before the Society of the Adelphi In Waterville College, Maine, August 11, 1841, Books on Line, http://www cgi.cs.cmu.edu.

    Google Scholar 

  • Eng, R. H. K., Padberg, F. T., Smith, S. M., Tan, E. N., and Cherubin, C. E., 1991, Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria, Antimicrob. Agents Chemother. 35: 1824–1828.

    PubMed  CAS  Google Scholar 

  • Evenboom, W., Van Der Does, J. Bruning, K., and Mur, L. M., 1981, A non-heterocystous mutant of Aphanizomenon flos-aquae, selected by competition in light-limited continuous culture, FEMS Microbiol. Lett. 10: 11–16.

    Google Scholar 

  • Fairbaim, B., 1994, History from the ecological perspective: gaia theory and the problem of cooperatives in turn-of-the-century Germany, Amer. Historic. Rev. 99: 1203–1239.

    Google Scholar 

  • Farrar, J. F., 1976. The lichen as an ecosystem: observation and experiment, in: Lichenology: Progress and Problems (D. H. Brown, D. L. Hawksworth, and R. H. Bailey, eds.), Academic Press, New York, pp. 19–46.

    Google Scholar 

  • Federle, T. W. and Pastwa, G. M., 1988, Biodegradation of surfactants in saturated subsurface sediments: a field study, Groundwater 26: 761–70.

    CAS  Google Scholar 

  • Federle, T. W., and Schwab, B. S., 1989, Mineralization of surfactants by microbiota of aquatic plants, Appl. Environ. Microbiol. 55: 2092–2113.

    PubMed  CAS  Google Scholar 

  • Fix, A. G., 1984, Kin groups and trait groups population structure and epidemic disease, Amer. J. Phys. Anth. 65: 201–212.

    CAS  Google Scholar 

  • Fletcher, M., 1984, Comparative physiology of attached and free-living bacteria, in: Microbial Adhesion And Aggregation ( K. C. Marshall, ed.), Springer-Verlag, New York, pp. 223–232.

    Google Scholar 

  • Foster, P. L., 1993, Adaptive mutation: the uses of adversity, Annu. Rev. Microbiol. 47: 467–504.

    PubMed  CAS  Google Scholar 

  • Fulthorpe, R. R., and Wyndham, R. C., 1989, Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system, Appl. Environ. Microbiol. 55: 1584–1590.

    PubMed  CAS  Google Scholar 

  • Fulthorpe, R. R., and Wyndham, R. C., 1991, Transfer and expression of the catabolic plasmic pBRC60 in wild bacterial recipients in a freshwater ecosystem, Appl. Environ. Microbiol. 57: 1546–1553.

    PubMed  CAS  Google Scholar 

  • Fulthorpe, R. R., and Wyndham, R. C., 1992, Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem, Appl. Environ. Microbiol. 58: 314–325.

    PubMed  CAS  Google Scholar 

  • Fulthorpe, R. R., McGowan, C., Maltseva, O. V., Holben, W. E., and Tiedje, J. M., 1995, 2, 4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes, Appl. Environ. Microbiol. 61: 3274–3281.

    Google Scholar 

  • Garland, J. L., and Mills, A. L., 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization, Appl. Environ. Microbiol. 57: 2351–2359.

    PubMed  CAS  Google Scholar 

  • Geesey, G. G., and White, D. C., 1990, Determination of bacterial growth and activity at solid-liquid interfaces, Ann. Rev. Microbio!. 44: 579–602.

    CAS  Google Scholar 

  • Geesey, G. G., Mutch, R., Costerton, J. W., and Green, R. B., 1978, Sessile bacteria: an important component of the microbial population in small mountain streams, Limnol. Oceanogr. 23: 1214–1223.

    CAS  Google Scholar 

  • Gest, H., 1993, Bacterial growth and reproduction in nature and in the laboratory, ASM News 59: 542–543.

    Google Scholar 

  • Ghosal, D., You, I.-S., Chatterjee, D. K., and Chakrabarty, A. M., 1985, Microbial degradation of halogenated compounds, Science 228: 135–142.

    PubMed  CAS  Google Scholar 

  • Gilbert, P., Collier, P. J., and Brown, M. R. W., 1990, Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response, Antimicrob. Agents Chemother. 34: 1856–1868.

    Google Scholar 

  • Goodnight, C. J., 1990a, Experimental studies of community evolution I. The ecological basis of the response to community selection, Evolution 44: 1614–1624.

    Google Scholar 

  • Goodnight, C. J., 1990b, Experimental studies of community evolution II. The ecological basis of the response to community selection, Evolution 44: 1625–1636.

    Google Scholar 

  • Goodnight, C. J., Schwartz, J. M., and Stevens, S. L., 1992, Contextual analysis of models of group selection, soft selection, hard selection, and the evolution of altruism, American Naturalist 140: 743–761.

    Google Scholar 

  • Goodwin, S., Conrad, R., and Zeikus, J. G., 1988, Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems, Appl. Environ. Microbiol. 54: 590–593.

    PubMed  CAS  Google Scholar 

  • Gottschal, J. C., and Dijkhuizen, L., 1988, The place of continuous culture in ecological research, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 19–49.

    Google Scholar 

  • Guckert, J. B., Hood, M. A., and White, D. C., 1986, Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proporations of cyclopropyl fatty acids, Appl. Environ. Microbiol. 52: 794–801.

    PubMed  CAS  Google Scholar 

  • Guede, H., 1979, Grazing by protozoa as selection factor for activated sludge bacteria, Microb. Ecol. 5: 225–238.

    Google Scholar 

  • Haack, S. K., Garchow, H., Odelson, D. A., Forney, L. J., and Klug, M. J. 1994, Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities, Appl. Environ. Microbiol. 60: 2483–2493.

    PubMed  CAS  Google Scholar 

  • Haeckel, E., 1866, Generelle Morphologie der Organism, Reimer, Berlin.

    Google Scholar 

  • Haefele, D. M., and Lindow, S. E., 1987, Flagellar motility confers epiphytic fitness advantages upon Pseudomonas svringae, Appl. Environ. Microbiol. 53: 2528–2533.

    PubMed  CAS  Google Scholar 

  • Hahn, D., Amann, R. I., Ludwig, W., Akkermans, A. D. L., and Schleifer, K.-H., 1992, Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides, J. Gen. Microbiol. 138: 879–887.

    PubMed  CAS  Google Scholar 

  • Harder, W., and Veldkamp, H., 1971, Competition of marine phychrophilic bacteria at low temperatures, Antonie van Leeuwenhoek 37: 51–63.

    PubMed  CAS  Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43: 1–24.

    PubMed  CAS  Google Scholar 

  • Haugland, R. P., 1992, Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes Inc., Eugene, OR.

    Google Scholar 

  • Hawksworth, D. L., 1982, Secondary fungi in lichen symbioses: parasites, saprophytes and parasymbionts, J. Hattori Botan. Lab. 52: 357–366.

    Google Scholar 

  • Hawksworth, D. L., 1988, The variety of fungal-algal symbioses, their evolutionary significance and the nature of lichens, Botan. J. Linnean Soc. 96: 3–20.

    Google Scholar 

  • Herbert, R. A., 1988, Bidirectional compound chemostats: applications of compound diffusion-linked chemostats in microbial ecology, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. I ( J. W. T Wimpenny, ed.), CRC Press, Boca Raton, pp. 99–115.

    Google Scholar 

  • Herdman, M., 1977, The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Microbiol. Lett. 1: 7–12.

    CAS  Google Scholar 

  • Hernandez-Cruz, A., Sala, F., and Adams, P. R., 1990, Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron, Science 247: 858–862.

    PubMed  CAS  Google Scholar 

  • Hickey, D. A., 1982, Selfish DNA: A sexually-transmitted nuclear parasite, Genetics 106:519–531. Hirsch, P., 1980, Some thoughts on and examples of microbial interactions in the natural environment, in: Aquatic Microbial Ecology ( R. R. Colwell and A. J. Foster, eds.), University of Maryland, College Park, pp. 36–54.

    Google Scholar 

  • Hirsch, P., 1984, Microcolony formation and consortia, in: Microbial Adhesion and Aggregation ( K. C. Marshall, ed.), Springer Verlag, New York, pp. 373–393.

    Google Scholar 

  • Hoff, K. A., 1988, Rapid and simple method for double staining of bacteria with 4’, 6-Diamidino-2phenylindole and fluorescein isothiocyanate-labeled antibodies, Appl. Environ. Microbiol. 54: 2949–2952.

    PubMed  CAS  Google Scholar 

  • Holt, J. G., and Krieg, N. R., 1994, Enrichment and isolation, in: Methods for General and Molecular Bacteriology ( P. Gerhardt, ed.), American Society for Microbiology, Washington, D.C., pp. 179–204.

    Google Scholar 

  • James, G. A., Caldwell, D. E., and Costerton, J. W., 1993, Spatial relationships between bacterial species within biofilms, Proceedings of The CSMISIM Annual Meeting (abstract) Toronto, Canada.

    Google Scholar 

  • Jannasch, H. W., 1967, Enrichment of aquatic bacteria in continuous culture, Arch. Mikrobiol. 59: 165–173.

    PubMed  CAS  Google Scholar 

  • Jensen, R. H., and Woolfolk, C. A., 1985, Formation of filaments by Pseudomonas putida, Appl. Environ. Microbiol. 50: 364–372.

    PubMed  CAS  Google Scholar 

  • Jeon, K. W., 1972, Development of cellular dependence in infective organisms; microsurgical studies in amoebas, Science 176: 1122–1123.

    PubMed  CAS  Google Scholar 

  • icon, K. W., and Ahn, T. I.. 1978, Temperature sensitivity: A cell character determined by obligate endosymbionts in amoebas. Science 202: 635–637.

    Google Scholar 

  • Jeon, K. W., and Jeon, M. S., 1976, Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components, J. Cell. Physiol. 89: 337–344.

    PubMed  CAS  Google Scholar 

  • Jiménez, L., Breen, A., Thomas, N., Federle, T. W., and Sayler, G. S., 1991, Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium, Appl. Environ. Microbiol. 57, 1566–1569.

    PubMed  Google Scholar 

  • Jones, W. J., Guyot, J.-P., and Wolfe, R. S., 1984, Methanogenesis from sucrose by defined immobilized consortia, Appl. Environ. Microbiol. 47: 1–6.

    PubMed  CAS  Google Scholar 

  • Kauffman, S., 1995, At Home In The Universe: The Search for Laws of Self-Organization and Complexity,Oxford University Press, New York.

    Google Scholar 

  • Kauffman, S. A., 1993, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York.

    Google Scholar 

  • Keller, E. F., and Lloyd, E. A., 1992, Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kelly, K., 1994, Out of Control—The New Biology of Machines, Social Systems and the Economic World, Addison-Wesley, New York.

    Google Scholar 

  • Kendrick, B., 1991, Fungal symbioses and evolutionary innovations, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kieft, T. L., and Caldwell, D. E., 1984, Chemostat and in-situ colonization kinetics of Thermothrix thiopara on calcite and pyrite surfaces, Geomicrobiol. J. 3: 217–229.

    CAS  Google Scholar 

  • Kinner, N. E., Balkwill, D. L., and Bishop, P. L., 1983, Light and electron microscope studies of microorganisms growing in rotating biological contactor biofilms, Appl. Environ. Microbiol. 45: 1659–1669.

    PubMed  CAS  Google Scholar 

  • Kjelleberg, S., 1984, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), Wiley, New York, pp. 151–159.

    Google Scholar 

  • Klinger, J. M., Stowe, R. P., Obenhuber, D. C., Groves, T. O., Mishra, S. K., and Pierson, D. L., 1992, Evaluation of the Biolog automated microbial identification system, Appl. Environ. Microbiol. 58: 2089–2092.

    Google Scholar 

  • Koch, A. I., 1991, Diffusion: The crucial process in many aspects of the biology of bacteria, in: Advances in Microbial Ecology, Vol. 11 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 37–70.

    Google Scholar 

  • Koch, R., 1881, Methods for the study of pathogenic organisms, Mittheilungen aus dem Kaiserlichen Gesundheitsamte 1: 1–48.

    Google Scholar 

  • Koch, R., 1884, The etiology of tuberculosis, Mitthelungen aus dem Kaiserlichen Gesundheitsamte 2: 1–88.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., Sutton, B., and Caldwell, D. E., 1989, Effects of laminar flow velocity on the kinetics of surface recolonization by mot+ and mot- Pseudomonas fluorescens, Microb. Ecol. 18: 1–19.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., Zhang, L., and Caldwell, D. E., 1990, Effect of gravity on bacterial deposition and orientation in laminar flow environments, Biofouling 2: 335–50.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., Hendry, M. J., and Caldwell, D. E. 1992, Programs for determining statistically representative areas of microbial biofilms, Binary, 4: 204–210.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., Hendry, M. J., and Caldwell, D. E., 1993, Analysis of spatial variability within mot and mot- Pseudomonas fluorescens biofilms using representative elements, Biofouling 7: 339–358.

    Google Scholar 

  • Korber, D. R., James, G. A., and Costerton, J. W., 1994a, Evaluation of fleroxacin activity against established Pseudomonas fluorescens biofilms, Appl. Environ. Microbiol. 60: 1663–1669.

    PubMed  CAS  Google Scholar 

  • Korber, D. R., Caldwell, D. E., and Costerton, J. W., 1994b, Structural analysis of native and pure-culture biofilms using scanning confocal laser microscopy, Abstracts of the National Association of Corrosion Engineers (NACE) Canadian Region Western Conference, Calgary, Alberta.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., and Caldwell, D. E., I994c, Effect of motility on surface colonization and reproductive success of Pseudomonas Jluore.scens in dual-dilution continuous culture and batch culture systems, Appl. Environ. Microbiol. 60: 1421–1429.

    Google Scholar 

  • Korber, D. R., Lawrence, J. R., Lappin-Scott, H. M., and Costerton, J. W., 1995, Growth of microorganisms on surfaces, in: Bacterial Biofilms ( H. M. Lappin-Scott and J. W. Costerton, eds.). Cambridge University Press, Cambridge, U.K., pp. 15–45.

    Google Scholar 

  • Korber, D. R., Choi, A., and Caldwell, D. E., 1996, Bacterial plasmolysis as a physical indicator of viability, Appl. Environ. Microbiol 62: 3939–3947.

    PubMed  CAS  Google Scholar 

  • Krassilov, V. A., 1994, Evolutionary synthesis, Trends Ecol. Evol. 9: 149.

    Google Scholar 

  • Labatiuk, C. W., Schaefer Ill, F. W., Finch, G. R., and Belosevic, M., 1991, Comparison of animal infectivity, excystation, and fluorogenic dye as measures of Giardia muris cyst inactivation by ozone, Appl. Environ. Microbiol. 57: 3187–3192.

    PubMed  CAS  Google Scholar 

  • Lang, E., Viedt, H., Egestorff, J., and Hanert, H. H., 1992, Reaction of the soil microflora after contamination with chlorinated aromatic compounds and HCH, FEMS Microbiol. Ecol. 86: 275–282.

    CAS  Google Scholar 

  • Lappin, H. M., Greaves, M. P., and Slater, J. H., 1985, Degradation of the herbicide mecoprop 2–2 methyl-4-chlorophenoxypropionic-acid by a synergistic microbial community, Appl. Environ. Microbiol. 49: 429–433.

    PubMed  CAS  Google Scholar 

  • Lattanzio, Jr., F. A., 1990, The effects of pH and temperature on fluorescent calcium indicators as determined with chelex-100 and EDTA buffer systems, Biochem. Biophys. Res. Comm. 171: 102–108.

    PubMed  CAS  Google Scholar 

  • Lattanzio, Jr., F. A., and Bartschat, D. K., 1991, The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators, Biochem. Biophys. Res. Comm. 177: 184–191.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. R., and Caldwell, D. E., 1987, Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14: 15–27.

    Google Scholar 

  • Lawrence, J. R., and Korber, D. R., 1994, Aspects of microbial surface colonization behavior, in: Trends in Microbial Ecology, ( R. Guerrero and C. Pedros-Alin, eds.), Spanish Society for Microbiology, Barcelona, pp. 113–118.

    Google Scholar 

  • Lawrence, J. R., Delaquis, P. J., Korber, D. R., and Caldwell, D. E., 1987, Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14: 1–14.

    CAS  Google Scholar 

  • Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E., 1991, Optical sectioning of microbial biofilms, J. Bacteriol. 173: 6558–6567.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. R., Korber, D. R., and Caldwell, D. E., 1992, Behavioral analysis of Vibrio parahaemolvticus variants in high and low viscosity microenvironments using digital image processing, J. Bacteriol. 174: 5732–5739.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. R., Wolfaardt, G. M., and Korber, D. R., 1994, Monitoring diffusion in biofilm matrices using confocal laser microscopy, Appl. Environ. Microbiol. 60: 1166–1173.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. R., Korber, D. R., and Wolfaardt, G. M., Caldwell, D. E., 1995, Behavioral strategies of surface-colonizing bacteria, in: Advances in Microbial Ecology, Vol. 14 (J. G. Jones, ed.), Plenum Press, New York, pp. 1–75.

    Google Scholar 

  • Leigh, E. G., Jr., 1983, When does the good of the group override the advantage of the individual’? Proc. Nat. Acad. Sci. USA 80: 2985–2989.

    PubMed  CAS  Google Scholar 

  • Lens, P. N. L., De Beer, D., Cronenberg, C. C. H., Houwen, F. P., Ottengraf, S. P. P., and Verstraete, W. H., 1993, Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles, Appl. Environ. Microbiol. 59: 3803–3815.

    PubMed  CAS  Google Scholar 

  • Lenski, R. E., and Travisano, M., 1994, Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. USA 91: 6808–6814.

    PubMed  CAS  Google Scholar 

  • Little, B., Ray, R., Wagner, P., Lewandowski, Z., Lee, W. C., Characklis, W. G., and Mansfeld, F., 1991, Impact of biofouling on the electrochemical behavior of 304 stainless steel in natural seawater, Biofouling 3, 45–49.

    CAS  Google Scholar 

  • Loehle, C., and Pechmann, J. H. K., 1988, Evolution: The missing ingredient in systems ecology, American Naturalist 132: 884–899.

    Google Scholar 

  • Lomnicki, A., 1978, Adventures of ecologists and evolutionists in the land of super-organisms, Wiadomosci Ekologiczne 24: 249–260.

    Google Scholar 

  • Lovelock, J. E., 1979, Gaia: A New Look at Life on Earth, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Lovelock, J. E., 1988, Ages of Gaia: A Biography of Our Living Earth, Norton, New York. Lovelock, J. E., and Margulis, L., 1974, Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis, Tellus 26: 2–10.

    Google Scholar 

  • Lovitt, R. W., and Wimpenny, J. W. T., 1981, Physiological behavior of Escherichia coli grown in opposing gradients of oxidant and reductant in the gradostat, J. Gen. Microbiol. 127: 269.

    PubMed  CAS  Google Scholar 

  • Luby-Phelps, K., Lanni, F., and Taylor, D. L., 1988, The submicroscopic properties of cytoplasm as a determinant of cellular function, Ann. Rev. Biophys. Chem. 17: 369–396.

    CAS  Google Scholar 

  • Mackie, R. L, Krecek, R. C., Els, H. J., van Niekerk, J. P., Kirschner, L. M., and Baecker, A. A. W., 1989, Characterization of the microbial community colonizing the anal and vulvar pores of helminths from the hindgut of zebras, Appl. Environ. Microbiol. 55: 1178–1186.

    PubMed  CAS  Google Scholar 

  • MacLeod, F. A., Guiot, S. R., and Costerton, J. W., 1990, Layered structure of bacterial aggregates produced in an uptlow anaerobic sludge bed reactor, Appl. Environ. Microbiol. 56: 1598–1607.

    PubMed  CAS  Google Scholar 

  • Madsen, T., and Aamand, J., 1992, Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture, Appl. Environ. Microbiol. 58: 557–561.

    PubMed  CAS  Google Scholar 

  • Maenhaut-Michel, G., and Shapiro, J. A., 1994, The roles of selection and starvation in the emergence of araB-lacZ fusion clones, EMBO J. 13: 5229–5239.

    CAS  Google Scholar 

  • Maigetter, R. Z., and Pfister, R. M., 1974, A mixed bacterial population in a continuous culture with and without kaolinite, Can. J. Microbiol. 21: 173–180.

    Google Scholar 

  • Malmcrona-Friberg, K., Tunlid, A., Marden, P., Kjelleberg, S., and Odham, G., 1986, Chemical changes in cell envelope and poly-13-hydroxybutyrate during short-term starvation of a marine bacterial isolate, Arch. Microbiol. 144: 340–245.

    CAS  Google Scholar 

  • Margulis, L. 1981, Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, W. H. Freeman, San Francisco.

    Google Scholar 

  • Margulis, L., 1990, Introduction, in: Handbook of Protoctista (L. Margulis, J. O. Corliss, M.

    Google Scholar 

  • Melkonian, D. J. Chapman, and H. I. Mckhann, eds.), Jones and Bartlett, Boston.

    Google Scholar 

  • Margulis, L., 1992, Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons, W.H. Freeman, Salt Lake City.

    Google Scholar 

  • Margulis, M., 1993, Microbial communities as units of selection, in: Trends in Microbial Ecology (R. Guerrero and C. Pedros-Alio, eds. ), Spanish Society of Microbiology of Barcelona, pp. 349–352.

    Google Scholar 

  • Margulis, L., 1995, From kefir to death, in: How Things Are. ( J. Brochmer, Ed.). William Morrow, New York, pp. 69–78.

    Google Scholar 

  • Margulis, L., and Fester, R., 1991, Symbiosis as a Source of Evolutionary Innovation, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Margulis, L., and Guerrero, R., 1991, Two plus three equal one: individuals emerge from bacterial communities, in: Gaia 2. Emergence: The New Science of Becoming, Lindisfarne Press, New York, pp. 60–67.

    Google Scholar 

  • Margulis, M., and West, O., 1993, Gaia and the colonization of Mars, GSA Today, 3: 277–291.

    PubMed  CAS  Google Scholar 

  • Marshall, K. C., 1994, Microbial ecology: wither goest thou? in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 5–8.

    Google Scholar 

  • Marshall, P. A., Loeb, G. I., Cowan, M. M., and Fletcher, M., 1989, Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy, Appl. Environ. Microbiol. 55: 2827–2831.

    PubMed  CAS  Google Scholar 

  • Marxsen, J., 1988, Investigations into the number of respiring bacteria in Groundwater from sandy and gravelly deposits, Microb. Ecol. 16: 65–72.

    Google Scholar 

  • Maynard-Smith, J., 1976, Group selection, Quart. Rev. Biol. 51: 277–283.

    Google Scholar 

  • Maynard-Smith, J., 1991, A darwinian view of symbiosis, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts, pp. 83–92.

    Google Scholar 

  • Mayr, E., 1993, What was the evolutionary synthesis? Trends Eco. Evol. 8: 31–34.

    CAS  Google Scholar 

  • McInerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbio!. 122: 129–135.

    CAS  Google Scholar 

  • McKinley, V. L., Costerton, J. W., and White, D. C., 1988, Microbial biomass, activity, and community structure of water and particulates retrieved by backflow from a waterflood injection well, Appl. Environ. Microbiol. 54: 1383–1393.

    PubMed  CAS  Google Scholar 

  • Mitchell, J., Pearson, G. L., Dillon, S., and Kantalis, K., 1995, Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations, Appl. Environ. Microbiol. 61: 4436 4440.

    Google Scholar 

  • Moller, S., Kristensen, C. S., Poulsen, L. K., Carstensen, J. M., and Molin, S. 1995, Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters, Appl. Environ. Microbiol. 61: 741–748.

    PubMed  CAS  Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance des Cultures Bacteriénnes, Hermann, Paris.

    Google Scholar 

  • Monod, J., 1949, The growth of bacterial cultures, Ann. Rev. Microbio!. 3: 371–394.

    Google Scholar 

  • Muyzer, G., De Waal, E. C., and Uitterlinden, A. G., 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16s rRNA, Appl. Environ. Microbio!. 59: 695–700.

    CAS  Google Scholar 

  • Neilson, A. H., Allard, A.-S., Hynning, P.-A., and Remberger, M., 1988, Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures, Appl. Environ. Microbiol. 54: 2226–2236.

    PubMed  CAS  Google Scholar 

  • Neu, T. R., and Marshall, K. C., 1991, Microbial “footprints”—a new approach to adhesive polymers, Biofouling 3: 101–112.

    Google Scholar 

  • Ney, U., Schoberth, S. M., Sahm, H., 1991, Anaerobic degradation of sulfite evaporator condensate in a fixed-bed loop reactor by a defined bacterial consortium, Appl. Microbial. Biotechnol. 34: 818–822.

    CAS  Google Scholar 

  • Nichols, P. D., Henson, J. M., Antworth, C. P., Parsons, J., Wilson, J. T., and White, D. C., 1987, Detection of a microbial consortium, including type II methanotrophs, by use of phosopholipid fatty acids in an anaerobic halogenated hydrocarbon-degrading soil column enriched with natural gas, Environ. Toxicol. Chem. 5: 89–97.

    Google Scholar 

  • Nix, P. G., and Daykin, M. M., 1992, Resazurin reduction tests as an estimate of coliform and heterotrophic bacterial numbers in environmental samples, Bull. Environ. Contam. Toxicol. 49: 354–360.

    PubMed  CAS  Google Scholar 

  • Noack, D., 1986, Directed selection of differentiation mutants of Streptomyces noursei using chemostat cultivation, J. Basic Microbio!. 26: 231–239.

    CAS  Google Scholar 

  • Novick, A., and Silard, L., 1950, Experiments with the chemostat on mutations of bacteria, Proc. Nat. Acad. Sci. USA 36: 708–719.

    PubMed  CAS  Google Scholar 

  • Nunney, L., 1985, Group selection, altruism, and structured deme models, Am. Naturalist 126: 212–230.

    Google Scholar 

  • Olsen, G. J., Lane, D. L., Giovannoni, S. J., and Pace, N. R., 1986, Microbial ecology and evolution: a ribosomal RNA approach, Ann. Rev. of Microbio!. 40: 337–365.

    CAS  Google Scholar 

  • Pace, N. R., Stahl, D. A., Lane, D. L., and Olsen, G. J., 1986, The analysis of natural microbial populations by rRNA sequences, Adv. Microb. Ecol. 9: 1–55.

    CAS  Google Scholar 

  • Palleroni, N. J., 1994, Some reflections on bacterial diversity, ASM News 60: 537–540.

    Google Scholar 

  • Parkes, R. J., and Senior, E., 1988, Multistate chemostats and other models for studying anoxic ecosystems, in: Handbook of Laboratory Model Systems for Microbial Ecosystems, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 51–71.

    Google Scholar 

  • Patel, G. B., 1984, Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen, Can. J. Microbiol. 30: 1383–1396.

    CAS  Google Scholar 

  • Peck, J. R., 1992, Group selection, individual selection, and the evolution of genetic drift, J. Theor. Biol. 159: 163–187.

    PubMed  CAS  Google Scholar 

  • Peters, A. C., 1990, Using image analysis to map bacterial growth on solid media, Binary 2: 73–75.

    Google Scholar 

  • Petrini, O., Hake, U., and Dreyfuss, M. M., 1990, An analysis of fungal communities isolated from fruticose lichens, Mycologia 82: 444–451.

    Google Scholar 

  • Phelps, T. J., Schram, R. M., Ringelberg, D., Dowling, N. J., and White, D. C., 1991, Anaerobic microbial activities including hydrogen mediated acetogenesis within natural gas transmission lines, Biofouling 3: 265–276.

    CAS  Google Scholar 

  • Pringsheim, E. G., 1946, The biphasic or soil-water culture method for growing algae and flagellata, J. Ecol. 33: 193–204.

    Google Scholar 

  • Prosser, J. I., 1989, Modeling nutrient flux through biofilm communities, in: Structure and Function of Biofilms ( W. G. Characklis and P. A. Wilderer, eds.), John Wiley and Sons, Toronto, pp. 239–250.

    Google Scholar 

  • Rasmussen, S. 1988, Toward a quantitative theory of the origin of life, in: Artificial Life, SF! Studies in the Sciences of Complexity ( C. Langton, ed.) Addison-Wesley, New York, pp. 79–104.

    Google Scholar 

  • Rasmussen, S. 1991, Aspects of information, life, reality and physics, in: Artificial Life II, SF! Studies in the Sciences of Complexity, Vol. X, ( C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds.), Addison-Wesley, New York, pp. 767–773.

    Google Scholar 

  • Rasmussen, S., Knudsen, C., Feldberg, R., Hindsholm, M., 1990, The coreworld: emergence and evolution of cooperative structures in a computational chemistry, Physica D 42: 111–134.

    Google Scholar 

  • Rajogopal, B. S., Brahmaprakash, G. P., and Sethunanthan, N., 1984, Degradation of carbofuran by enrichment cultures and pure cultures of bacteria from flooded soils, Environmental Pollution Series A, Ecological and Biological 36: 61–74.

    Google Scholar 

  • Ratnam, D. A., Pavlou, S., and Fredrickson, A. G., 1982, Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relationship, Biotechnol. Bioeng. 24: 2675–2694.

    PubMed  CAS  Google Scholar 

  • Revsbech, N. P., 1989, Diffusion characteristics of microbial communities determined by use of oxygen microsensors, J. Microbiol. Methods 49: 111–122.

    Google Scholar 

  • Revsbech, N. P., and Jorgenson, B. B., 1988, Microelectrodes: their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 293–352.

    Google Scholar 

  • Robarts, R. D., and Zohary, T., 1993, Fact or fiction—Bacterial growth rates and production as determined by [3H-methyl]thymidine, in: Advances in Microbial Ecology, Vol. 13 ( G. F. Jones, ed.), Plenum Press, New York, pp. 371–418.

    Google Scholar 

  • Robinson, R. W., Akin, D. E., Nordstedt, R. A., Thomas, M. V., and Aldrich, H. C., 1984, Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors, Appl. Environ. Microbiol. 48: 127–136.

    PubMed  CAS  Google Scholar 

  • Rodriguez, G. G., Phipps, D., Ishiguro, K, and Ridgway, H. F., 1992, Use of a fluorescent redox probe for direct visualization of actively respiring bacteria, Appl. Environ. Microbiol. 58, 1801–1808.

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., 1984, Myxobacteria: Development and Cell Interactions, Springer-Verlag, New York.

    Google Scholar 

  • Rothmel, R. K., Haugland, R. A., Coco, W. M., Sangodkar, U. M. X., and Chakrabarty, A. M. 1989, Natural and directed evolution: microbial degradation of synthetic chlorinated compounds, in: Recent Advances in Microbial Ecology ( T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), JSS Press, Tokyo, pp. 605–610.

    Google Scholar 

  • Rozgaj, R., and Glancer-Soljan, M., 1992, Total degradation of 6-aminonaphthalene-2-sulphonic acid by a mixed culture consisting of different bacterial genera, FEMS Microbiol. Ecol. 86: 229–235.

    CAS  Google Scholar 

  • Rutgers, M., Bogte, J. J., Breure, A. M., and van Andel, J. G., 1993, Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentration-controlled continuous culture, Appl. Environ. Microbiol. 59: 3373–3377.

    PubMed  CAS  Google Scholar 

  • Saavedra-Molina, A., Uribe, S., and Devlin, T. M., 1990, Control of mitochondrial matrix calcium: studies using fluo-3 as a fluorescent calcium indicator, Biochem. Biophys. Res. Comm. 167: 148–153.

    PubMed  CAS  Google Scholar 

  • Sauch, J. F., Flanigan, D., Galvin, M. L., Berman, D., and Jakubowski, W., 1991, Propidium iodide as an indicator of Giardia cyst viability, Appl. Environ. Microbiol. 57: 3243–3247.

    PubMed  CAS  Google Scholar 

  • Schiefer, G. E., and Caldwell, D. E., 1982, Synergistic interaction between Anabaena and Zoogloea spp. in carbon dioxide limited continuous cultures, Appl. Environ. Microbiol. 44: 84–87.

    PubMed  CAS  Google Scholar 

  • Schmidt, E. L., 1972, Fluorescent antibody techniques for the study of microbial ecology, in: Modern Methods in the Study of Microbial Ecology, Vol. 17 ( T. Rosswall, ed.), Swedish Natural Science Research Council, Stockholm, pp. 67–76.

    Google Scholar 

  • Schmidt, T. M., Delong, E. F., and Pace, N. R., 1991, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173: 4371–4378.

    PubMed  CAS  Google Scholar 

  • Schulze, E. D., and Mooney, H. A., 1993, Biodiversity and Ecosystem Function Ecological Studies 99, Springer-Verlag, New York.

    Google Scholar 

  • Schwemmler, W., 1989, Symbiogenesis: A Macro-mechanism of Evolution, Walter de Gruyter, Berlin.

    Google Scholar 

  • Scott, O. T., 1985, Petridoglycan envelope in the cyanelles of Glaucocystis nostochinearum, in: Planetary Ecology ( D. E. Caldwell, J. A. Brierley, and C. L. Brierley, eds.), Van Nostrand Reinhold Co., New York, pp. 27–40.

    Google Scholar 

  • Senior, E., Bull, A. T., and Slater, J. H., 1976, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature 263: 476–479.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. A., 1984, The use of Mudlac transposotts as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces, J. Gen. Microbiol. 130: 1169–1181.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. A., 1985a, Photographing bacterial colonies, ASM News 51: 62–69.

    Google Scholar 

  • Shapiro, J. A., 19856, Mechanisms of DNA reorganization in bacteria, Int. Rev. Cytol. 93: 25–56.

    Google Scholar 

  • Shapiro, J. A., 1988, Bacteria as multicellular organisms, Sci. Am. 256: 82–89.

    Google Scholar 

  • Shapiro, J. A., 1992, Differential action and differential expression of E. coli DNA polymerase I during colony development, J. Bacteriol. 174: 7262–7272.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. A., and Higgins, N. P., 1988, Variation of B-galactosidase expression from Mudlac elements during the development of E. coli colonies, Annales de l’institut Pasteur 139: 79–103.

    CAS  Google Scholar 

  • Shapiro, J. A., and Trubatch, D., 1991, Sequential events in bacterial colony morphogenesis, in: Waves and Patterns in Chemical and Biological media ( H. L. Swinney and V. I. Krinski eds.), Elsevier Science, Amsterdam, pp. 214–223.

    Google Scholar 

  • Shen, C. F., Kosaric, N., and Blaszczyk, R., 1993, The effect of heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular substance, Water Res. 27: 25–33.

    CAS  Google Scholar 

  • Shotton, D. M., 1989, Confocal scanning optical microscopy and its applications for biological specimens, J. Cell Sci. 94: 175–206.

    Google Scholar 

  • Sissons, C. H., Wong, L., Cutress, T. W., 1995, Patterns and rates of growth of microcosm dental plaque biofilms, Oral Microbiol. Immunol. 10: 160–167.

    PubMed  CAS  Google Scholar 

  • Sjollema, J., Busscher, H. J., and Wéerkamp, A. H., 1989a, Experimental approaches for studying adhesion of microorganisms to solid substrata: Applications and mass transport, J. Microbio!. Meth. 9: 79–90.

    Google Scholar 

  • Sjollema, J., Busscher, H. J., and Weerkamp, A. H., 1989b, Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis, J. Microbiol. Meth. 9: 73–78.

    Google Scholar 

  • Sjollema, J., Van der Mei, H. C., Uyen, H. M. W., and Busscher, H. J., 1990, The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell, J. Adhesion Sci. Technol. 4: 765–777.

    Google Scholar 

  • Skryabin, G. K., Golovleva, L. A., Golovlev, E. L., Pertsova, R. N., and Zyakun, A. M., 1978, Degradation of DDT and its analogs by soil microflora, Izvestiya Akademii Nauk Sssr Seriya Biologicheskaya 3: 352–365.

    Google Scholar 

  • Slater, J. H., 1988, Microbial population and community dynamics, in: Micro-organisms in Action: Concepts ( J. M. Lynch and J. E. Hobbie, eds.), Blackwell Scientific, Palo Alto, CA, pp. 51–74.

    Google Scholar 

  • Slater, J. H., and Hartman, D. J., 1982, Microbial ecology in the laboratory: experimental systems, in: Experimental Microbial Ecology ( R. G. Bums and J. H. Slater, eds.), Blackwell Scientific, Oxford, pp. 255–274.

    Google Scholar 

  • Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., Collins, S. P.. Wilson, J. T., McNabb, J. F., and White, D. C., 1986, Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination, Can. J. Microbiol. 32: 104–111.

    CAS  Google Scholar 

  • Sober, E., 1984, The Nature Of Selection: Evolutionary Theory in Philosophical Terms, Bradford, Cambridge, MA.

    Google Scholar 

  • Sonea, S., 1991, Bacterial evolution without speciation, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts, pp. 95–105.

    Google Scholar 

  • Sonea, S., and Panisset, M., 1983, A New Bacteriology, Jones and Bartlett, Boston, MA.

    Google Scholar 

  • Stahl, D. A., Lane, D. J., Olson, G. J., and Pace, N. R., 1984, Analysis of hydrothermal ventassociated symbionts by ribosomal RNA sequences, Science 224: 409–411.

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Appl. Environ. Microbiol. 54: 1079–1084.

    PubMed  CAS  Google Scholar 

  • Stams, A. J. M., Grotenhuis, J. T. C., and Zehnder, A. J. B. 1989, Structure-function relationship in granular sludge, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Societies, Tokyo, pp. 440–445.

    Google Scholar 

  • Starmer, W. T., Ganter, P., Aberdeen, B., Lachance, M. A., and Phaff, H. J., 1987, The ecological role of killer yeasts in natural communities of yeasts, Can. J. Microbiol. 33: 783–796.

    PubMed  CAS  Google Scholar 

  • Starmer, W. T., Ganter, P. F., and Aberdeen, B., 1992, Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States, Appl. Env. Microbiol. 58: 990–997.

    CAS  Google Scholar 

  • Stevens, T. O., and Holbert, B. S., 1990, Density-dependent growth patterns exhibited by bacteria from terrestrial subsurface environments, Abstracts of the Conference on Multicellular and Interactive Behavior of Bacteria, American Society of Microbiology, Marine Biological Laboratory, Woods Hole, Massachusetts, p. 20.

    Google Scholar 

  • Stewart, P. S., Peyton, B. M., Drury, W. J., and Murga, R., 1993, Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol. 59: 327–329.

    PubMed  CAS  Google Scholar 

  • Szathmary, E. and Demeter, L., 1987, Group selection of early replicators and the origin of life, J. Theoret. Biol. 128: 463–486.

    CAS  Google Scholar 

  • Szybalski, W. 1952, Gradient plates for the study of microbial resistance to antibiotics, Bacteriol. Proc. 36.

    Google Scholar 

  • Szybalski, W., and Bryson, V., 1953, Genetic studies on microbial cross-resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics, J. Bacteriol. 64: 489–499.

    Google Scholar 

  • Tabor, P. S., and Neihof, R. A., 1982, Improved method for determination of respiring individual microorganisms in natural waters, Appl. Environ. Microbiol. 43: 1249–1255.

    PubMed  CAS  Google Scholar 

  • Tagger, S., Truffaut, N., and Le Petit, J., 1990, Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment, Can. J. Microbiol. 36: 676–681.

    PubMed  CAS  Google Scholar 

  • Takana, H., Matsumura, M., and Veliky, I. A., 1984, Diffusion characteristics of substrates in Ca-alginate gel beads, Biotechnol. Bioeng. 26: 53–58.

    Google Scholar 

  • ten Brummeler, E., Hulshoff Pol, L. W., Dolfing, J., Lettinga, G., and Zehnder, A. J. B., 1985, Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture, Appl. Environ. Microbiol. 49: 1472–1477.

    PubMed  CAS  Google Scholar 

  • Thiele, J. H., Chartrain, M., and Zeikus, J. G., 1988, Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis, Appl. Environ. Microbial. 54: 10–19.

    CAS  Google Scholar 

  • Troy, F. A., 1979, The chemistry and biosynthesis of selected bacterial capsular polymers, Ann. Rev. Microbiol. 33: 519–560.

    CAS  Google Scholar 

  • Trulear, M. G., and Characklis, W. G., 1982, Dynamics of biofilm processes, J. Wat. Poll. Control Fed. 54: 1288–1301.

    CAS  Google Scholar 

  • Tsien, R. Y., 1989, Fluorescent indicators of ion concentrations, Meth. Cell Biol. 30: 127–156.

    CAS  Google Scholar 

  • Tsien, R. Y., and Waggoner, A., 1990, Fluorophores for confocal microscopy: photophysics and photochemistry, in: Handbook of Confocal Microscopy ( J. B. Pawley, ed.), Plenum Press, New York, pp. 169–178.

    Google Scholar 

  • Uhlinger, D. J., and White, D. C., 1983, Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica, Appl. Environ. Microbial. 45: 64–70.

    CAS  Google Scholar 

  • Upton, A. D., Nedwell, D. B., Wynn-Williams, D. D., 1990, The selection of microbial communities by constant or fluctuating temperatures, FEMS Microb. Ecol. 74: 243–252.

    Google Scholar 

  • Veldkamp, H., 1977, Ecological studies with the chemostat, in: Advances in Microbial Ecology, Vol. I ( M. Alexander, ed.), Plenum Press, New York, pp. 59–94.

    Google Scholar 

  • Veldkamp, H., and Jannasch. H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22: 105–123.

    CAS  Google Scholar 

  • Voordouw, G., Shen, Y., Harrington, C. S., Telang, A. J., Jack, T. R., and Westlake, D. W. S., 1993, Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters, Appl. Environ. Microbiol. 59: 4101–4114.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Voordouw, J. K., Jack, T. R., Foght, J., Fedorak, P. M., and Westlake, D. W. S., 1991, Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application oto the identification of sulfate-reducing bacteria in oil field samples, Appl. Environ. Microbiol. 57: 3070–3078.

    PubMed  CAS  Google Scholar 

  • Voordouw, G., Voordouw, J. K., Jack, T. R., Foght, J., Fedorak, P. M., and Westlake, D. W. S., 1992, Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sampling genome probing, Appl. Environ. Microbiol. 58: 3542–3552.

    PubMed  CAS  Google Scholar 

  • Wade, M. J., 1978, O. Rev. Biol. 53: 101–114.

    Google Scholar 

  • Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.-H., 1993, Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbial. 59: 1520–1525.

    CAS  Google Scholar 

  • Ward, D. M., Bateson, M. M., Weller, R., and Ruff-Roberts, A. L., 1992, Ribosomal RNA analysis of microorganisms as they occur in nature, in: Advances in Microbial Ecology, Vol. 12 ( K. C. Marshall, ed. ), Plenum Press, pp. 219–286.

    Google Scholar 

  • Ward, D. M., Weller, R., and Bateson, M. M., 1990, 16s rRNA sequences reveal uncultured inhabitants of a well-studied thermal community, Nature 345: 63–65.

    Google Scholar 

  • Weber, N. A., 1966, Fungus-growing ants, Science 153: 587–604.

    PubMed  CAS  Google Scholar 

  • Weber, N. A., 1972, The fungus-culturing behavior of ants, American Zoologist 12: 577–587.

    Google Scholar 

  • Weinberg, E. D., 1957, Double-gradient agar plates, Science 125: 196.

    PubMed  CAS  Google Scholar 

  • White, D. C., 1986, Environmental effects testing with quantitative microbial analysis: chemical signatures correlated with in situ biofilm analysis by FTIIR, Toxicity Assessment 1: 315–338.

    CAS  Google Scholar 

  • White, J. G., Amos, W. B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structure by fluorescence light microscopy, J. Cell Biol. 105: 41–48.

    Google Scholar 

  • Wilkinson, T. G., Topiwala, H. H., and Hamer, G., 1974, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioeng. 16: 41–59.

    PubMed  CAS  Google Scholar 

  • Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin-Cummings, Menlo Park, CA.

    Google Scholar 

  • Wilson, D. S., 1987, Altruism in mendelian populations derived from sibling groups. The Haystack model revisited. Evolution 41: 1059–1070.

    Google Scholar 

  • Wilson, D. S., 1992, Complex interactions in metacommunities with implications for biodiversity and higher levels of selection, Ecology 73: 1984–2000.

    Google Scholar 

  • Wilson, J. B., 1987, Group selection in plant populations, Theoret. Appl. Genet. 74: 493–502.

    Google Scholar 

  • Wimpenny, J. W. T., 1988, Bidirectionally linked continuous culture: the gradostat, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, ‘Vol. 1 (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 73–98.

    Google Scholar 

  • Wimpenny, J. W. T., 1992, Microbial systems: Patterns in space and time, in: Advances in Microbial Ecology, Vol. 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 469–522.

    Google Scholar 

  • Wimpenny, J. W. T., and Waters, P., 1984, Growth of microorganisms in gel-stabilized twodimensional diffusion gradient systems, J. Gen. Microbial. 130: 2921–2936.

    CAS  Google Scholar 

  • Wimpenny, J. W. T., Waters, P., and Peters, A., 1988, Gel-plate methods in microbiology, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 229–251.

    Google Scholar 

  • Wimpenny, J. W. T., Gest, H., and Favinger. J. L., 1986, The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCI concentration, FEMS Microbial. Leu. 37: 367–371.

    CAS  Google Scholar 

  • Wirsen, C. O., and Jannasch, H. W., 1970, Growth response of Spirosoma sp. to temperature shifts in continuous culture, Bacteriological Proceedings G118: 32.

    Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microb. Rev. 51: 221–271.

    CAS  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Hendry, M. J., Robarts, R. D., and Caldwell, D. E., 1993, Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia, Appl. Environ. Microb. 59: 2388–2396.

    CAS  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., Caldwell, S. J., and Caldwell, D. E., 1994a, Multicellular organization in a degradative biofilm community, Appl. Environ. Microbial. 60: 434–446.

    CAS  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994b, The role of interactions, sessile growth and nutrient amendment on the degradative efficiency of a bacterial consortium, Can. J. Microbiol. 40: 331–340.

    PubMed  CAS  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Headley, J. V., Robarts, R. D., and Caldwell, D. E., 1994e, Microbial expolymers provide a mechanism for bioaccumulation of contaminants, Microbial Ecology 27: 279–291.

    CAS  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994d, Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation, Appl. Environ. Microbiol. (in press).

    Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1995, In situ characterization of biofilm expolymers involved in the accumulation of chlorinated organics (submitted).

    Google Scholar 

  • Wright, J. B., Costerton, J. W., and McCoy, W. F. 1988, Filamentous growth of Pseudomonas aeruginosa, J. Indust. Microbiol. 3: 139–146.

    Google Scholar 

  • Yockey, H. P., 1990, When is random random? Nature 344: 823.

    Google Scholar 

  • Yockey, H. P., 1995, Information in bits and bytes: reply to Lifson’s review of Information Theory and Molecular Biology, Bioessays 17: 85–88.

    Google Scholar 

  • Yu, F. P. and McFeters, G. A., 1994, Physiological response of bacteria in biofilms to disinfection, Appl. Environ. Microbiol. 60: 2462–2466.

    CAS  Google Scholar 

  • Zahavi, A., 1981, Some comments on sociobiology, Auk 98: 412–415.

    Google Scholar 

  • Zahavi, A., and Ralt, D., 1984, Social adaptations in myxobacteria, in: Myxobacteria: Development and Cell Interactions ( E. Rosenberg, ed.), Springer-Verlag, New York, pp. 216–245.

    Google Scholar 

  • Zeikus, J. G., and Johnson, E. A., 1991, Mixed Cultures in Biotechnology, McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caldwell, D.E., Wolfaardt, G.M., Korber, D.R., Lawrence, J.R. (1997). Do Bacterial Communities Transcend Darwinism?. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9074-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9074-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9076-4

  • Online ISBN: 978-1-4757-9074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics