Roles of Submicron Particles and Colloids in Microbial Food Webs and Biogeochemical Cycles within Marine Environments

  • Toshi Nagata
  • David L. Kirchman
Part of the Advances in Microbial Ecology book series (AMIE, volume 15)


The recent discovery of numerous detrital submicron particles in diverse marine environments (Koike et al., 1990; Longhurst et al., 1992; Wells and Goldberg, 1991, 1994) has stirred the interest of oceanographers and has spurred studies into the roles of these small particles in marine food webs and biogeochemical fluxes. The abundance of non-living submicron particles (107–1010 particles ml−1) far exceeds the number of living particles of similar size dimensions, including phytoplankton, bacteria, and viruses (Koike et al., 1990; Wells and Goldberg, 1991; see Table I). Bulk chemical measurements have confirmed that the “colloidal fraction” (size, 0.001–1 μm) represents a large fraction (10–50%) of total “dissolved” organic carbon (DOC) in seawater (Ogawa and Ogura, 1992; Benner et al., 1992; Gau et al., 1994). Several provocative hypotheses have been proposed to explain the roles of colloids and submicron particles in trophic dynamics (Sherr, 1988; Flood et al., 1992), aggregate formation (Alldredge et al., 1993; Kepkay, 1994), and condensation of organic matter (Nagata and Kirchman, 1992b, 1996; Keil and Kirchman, 1994).


Dissolve Organic Matter Dissolve Organic Matter Submicron Particle Micron Particle Submicrometer Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A. L., Passow, U., and Logan, B. E., 1993, The abundance and significance of a class of large, transparent organic particles in the ocean, Deep-Sea Rea. 6: 1131–1140.CrossRefGoogle Scholar
  2. Altabet, M. A., 1990, Organic C, N, and stable isotopic composition of particulate matter collected on glass-fiber and aluminum oxide filters, Lirnnol. Oceanogr. 35: 902–909.CrossRefGoogle Scholar
  3. Amon, R. M. W., and Benner, R., 1994, Rapid cycling of high-molecular-weight dissolved organic matter in the ocean, Nature 369: 549–552.CrossRefGoogle Scholar
  4. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  5. Azam, F., Smith, D. C., Steward, G. F., and Hagstrom, A., 1994, Bacteria-organic matter coupling and its significance for oceanic carbon cycling, Microb. Ecol. 28: 167–179.CrossRefGoogle Scholar
  6. Baines, S. B., and Pace, M. L., 1991, The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems, Limnol. Oceanogr. 36: 1078–1090.CrossRefGoogle Scholar
  7. Barbeau, K., Moffett, J. W., Caron, D. A., Croot, P. L., and Erdner, D. L., 1996, Role of protozoan grazing in relieving iron limitation of phytoplankton, Nature 380: 61–64.CrossRefGoogle Scholar
  8. Bauer, J. E., Williams, P. M., and Druffel, E. R. M., 1992, 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea, Nature 357: 667–670.Google Scholar
  9. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. T., and Hatcher, P. G., 1992, Bulk chemical characteristics of dissolved organic matter in the ocean, Science 255: 1561–1564.PubMedCrossRefGoogle Scholar
  10. Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M., 1989, High abundance of viruses found in aquatic environments, Nature 340: 467–468.PubMedCrossRefGoogle Scholar
  11. Carlson, C. A., and Ducklow, H. W., 1995, Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: daily and fine-scale vertical variations, Deep-Sea Res. 42: 639–656.CrossRefGoogle Scholar
  12. Carlson, C. A., Ducklow, H. W., and Michaels, A. F., 1994, Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea, Nature 371: 405–408.CrossRefGoogle Scholar
  13. Carlson, D. J., Brann, M. L., Mague, T. H., and Mayer, L. M., 1985, Molecular weight distribution of dissolved organic materials in seawater determined by ultrafiltration: A re-examination, Mar. Chem. 16: 155–171.CrossRefGoogle Scholar
  14. Caron, D. A., and Goldman, J. C., 1993, Predicting excretion rates of protozoa: reply to the comment by Landry, Limnol. Oceanogr. 38: 472–474.CrossRefGoogle Scholar
  15. Cauwet, G., 1981, Non-living particulate matter, in: Marine Organic Chemistry ( E. K. Duursma and R. Dauson, eds.), Elsevier, New York, pp. 71–89.Google Scholar
  16. Chisholm, S. W., Olsonm, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., and Welschmeyer, N. A., 1988, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature 334: 340–343.CrossRefGoogle Scholar
  17. Chrost, R. J., 1991, Environmental control of synthesis and activity of aquatic microbial ectoenzymes, in: Microbial enzymes in aquatic environments ( R. J. Chrost, ed.), Springer-Verlag, New York, pp. 29–59.CrossRefGoogle Scholar
  18. Cole, J. J., Findlay, S., and Pace, M. R., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol. Prog. Ser. 43: 1–10.CrossRefGoogle Scholar
  19. Decho, A. W., 1990, Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Annu. Rev. 28: 73–153.Google Scholar
  20. Decho, A. W., and Lopez, G. R., 1993, Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships, Limnol. Oceanogr. 38: 1633–1645.CrossRefGoogle Scholar
  21. Deibel, D., and Lee, S. H., 1992, Retention efficiency of sub-micrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoe(jeni, Mar. Ecol. Prog. Ser. 81: 25–30.CrossRefGoogle Scholar
  22. Ducklow, H. W., 1984, Geographical ecology of marine bacteria: physical and biological variability at the mesoscale, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.). American Society for Microbiology, Washington, DC, pp. 22–31.Google Scholar
  23. Ducklow, H. W., and Carlson, C. A.. 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12: 113–181.CrossRefGoogle Scholar
  24. Ducklow, H. W., Kirchman, D. L., Quinby, H. L., Carlson, C. A., and Dam, H. G., 1993, Bacterioplankton carbon cycling during the spring bloom in the eastern North Atlantic Ocean, Deep-Sea Res. 11. 40: 245–263.Google Scholar
  25. Fenchel, T., 1987, Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  26. Flood, P. R., Deibel, D., and Morris, C. C., 1992, Filtration of colloidal melanin from sea water by planktonic tunicates, Nature 355: 630–632.CrossRefGoogle Scholar
  27. Fogg, G. E., 1983, The ecological significance of extracellular products of phytoplankton photosynthesis, Bot. Marina 26: 3–14.CrossRefGoogle Scholar
  28. Francois, R., 1990, Marine sedimentary humic substances: Structure, genesis and properties, Rev. Aquat. Sci. 3: 41–80.Google Scholar
  29. Fuhrman, J., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser. 37: 45–52.CrossRefGoogle Scholar
  30. Fuhrman, J., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso sea and its ecological implications, Mar. Ecol. Prog. Ser. 57: 207–217.CrossRefGoogle Scholar
  31. Gonzales, J. M., and Suttle, C. A., 1993, Grazing by marine nanoflagellates on viruses and virussized particles: ingestion and digestion, Mar. Ecol. Prog. Ser. 94: 1–10.CrossRefGoogle Scholar
  32. Gonzales, J. M., Sherr, E. B., and Sherr, B. F., 1990, Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates, Appl. Environ. Microbiol. 56: 583–589.Google Scholar
  33. Guo, L., Coleman, C. H., Jr., and Santschi, P. H., 1994, The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico, Mar. Chem. 45: 105–119.CrossRefGoogle Scholar
  34. Hara, S., Terauchi, K., and Koike, I., 1991, Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy, Appl. Environ. Microbiol. 57: 2731–2734.PubMedGoogle Scholar
  35. Hedges, J. 1., 1988, Polymerization of humic substances in natural environments, in: Humic Substances and Their Role in the Environment ( F. H. Frimmel and R. F. Christman, eds.), John Wiley & Sons, New York, pp. 45–58.Google Scholar
  36. Herndl, G. J., Muller-Niklas, G., and Frick, J., 1993, Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean, Nature 361: 717–719.CrossRefGoogle Scholar
  37. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33: 1225–1228.PubMedGoogle Scholar
  38. Hoppe, H. G., Ducklow, H., and Karrasch, B., 1993, Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean, Mar. Ecol. Prog. Ser. 93: 277–283.CrossRefGoogle Scholar
  39. Hutchins, D. A., and Bruland, K. W., 1994, Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey, Mar. Ecol. Prog. Ser. 110: 259–269.CrossRefGoogle Scholar
  40. Johnson, B. D., and Kepkay, P. E., 1992, Colloid transport and bacterial utilization of oceanic DOC, Deep-Sea Res. 39: 855–869.CrossRefGoogle Scholar
  41. Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res. 36: 483–495.CrossRefGoogle Scholar
  42. Keil, R. G., and Kirchman, D. L., 1993, Dissolved combined amino acids: chemical form and utilization by marine bacteria, Limnol. Oceanogr. 38: 1256–1270.CrossRefGoogle Scholar
  43. Keil, R. G., and Kirchman, D. L., 1994, Abiotic transformation of labile protein to refractory protein in seawater, Mar. Chem. 45: 187–196.CrossRefGoogle Scholar
  44. Keil, R. G., Montlucon, D. B., Prahl, F. G., and Hedges, J. I., 1994, Sorptive preservation of labile organic matter in marine sediments, Nature 370: 549–552.CrossRefGoogle Scholar
  45. Kepkay, P. E., 1994, Particle aggregation and the biological reactivity of colloids, Mar. Ecol. Prog. Ser. 109: 293–304.CrossRefGoogle Scholar
  46. Kirchman, D. L., 1993, Particulate detritus and bacteria in marine environments, in: MicrobiologyAn ecological approach ( T. E. Ford, ed.), Blackwell Scientific Publications, Boston, pp. 321–341.Google Scholar
  47. Kirchman, D. L., 1994, The uptake of inorganic nutrients by heterotrophic bacteria, Microb. Ecol. 28: 255–271.CrossRefGoogle Scholar
  48. Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, H. W., 1991, High turnover rates of dissolved organic carbon during a spring phytoplankton bloom, Nature 352: 612–614.CrossRefGoogle Scholar
  49. Kirchman, D. L., Ducklow, H. W., McCarthy, J. J. and Garside, C., 1994, Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean, Deep-Sea Res. 41: 879–895.CrossRefGoogle Scholar
  50. Koike, I., Hara, S., Terauchi, K. and Kogure, K., 1990, The role of submicrometer particles in the ocean, Nature 345: 242–244.CrossRefGoogle Scholar
  51. Koike, 1., Hara, S., Terauchi, K., Shibata, A., and Kogure, K., 1993, Marine viruses—their role in upper ocean dissolved organic matter (DOM) dynamics, in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 311–314.Google Scholar
  52. Lampert, W., 1978, Release of dissolved organic carbon by grazing zooplankton, Limnol. Oceanogr. 23: 831–834.CrossRefGoogle Scholar
  53. Landry, M. R., 1993, Predicting excretion rates of microzooplankton from carbon metabolism and elemental ratios, Limnol. Oceanogr. 38: 468–472.CrossRefGoogle Scholar
  54. Lee, S., and Fuhrman, J., 1987, Relationships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol. 53: 1298–1303.PubMedGoogle Scholar
  55. Lee, C., and Wakeham, S. G., 1992, Organic matter in the water column: future research challenges, Mar. Chem. 39: 95–118.CrossRefGoogle Scholar
  56. Leppard, G. G., 1984, The ultrastructure of lacustrine sedimenting materials in the colloidal size range, Arch. Hydrobiol. 101: 521–530.Google Scholar
  57. Libby, P. S., and Wheeler, P. A., 1994, A wet-oxidation method for determination of particulate organic nitrogen on glass fiber and 0.2 p.m membrane filters, Mar. Chem. 48: 31–41.CrossRefGoogle Scholar
  58. Longhurst, A. R., Koike, I., Li, W. K. W., Rodriguez, J., Dickie, P., Kepkay, P., Partensky, F., Bautista, B., Ruiz, J., Wells, M., and Bird, D., 1992, Sub-micron particles in northernwest Atlantic shelf water, Deep-Sea Res. 39: 1–7.CrossRefGoogle Scholar
  59. Marchant, H. J., and Scott, F. J., 1993, Uptake of sub-micrometer particles and dissolved organic material by Antarctic choanoflagellates, Mar. Ecol. Prog. Ser. 92: 59–64.CrossRefGoogle Scholar
  60. Massalski, A., and Leppard, G. G., 1979, Morphological examination of fibrillar colloids associated with algae and bacteria in lakes., Jour. Fish. Res. Board Canada 36: 922–938.CrossRefGoogle Scholar
  61. Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the North Atlantic, Limnol. Oceanogr. 30: 47–58.CrossRefGoogle Scholar
  62. Nagata, T., and Kirchman, D. L., 1991, Release of dissolved free and combined amino acids by bacterivorous marine flagellates, Limnol. Oceanogr. 36: 433–443.CrossRefGoogle Scholar
  63. Nagata, T., and Kirchman, D. L., 1992a, Release of dissolved organic matter by heterotrophic protozoa: implications for microbial food webs, Arch. Hydrobiol. 35: 99–109.Google Scholar
  64. Nagata, T., and Kirchman, D. L., 1992b, Release of macromolecular organic complexes by heterotrophic marine flagellates, Mar. Ecol. Prog. Ser. 83: 233–240.CrossRefGoogle Scholar
  65. Nagata, T., and Kirchman, D. L., 1996, Bacterial degradation of protein adsorbed to model sub-micron particles in seawater, Mar. Ecol. Prog. Ser. 132: 241–248.CrossRefGoogle Scholar
  66. Newman, M. E., Filella, M., Chen, Y., Negre, J-C., Perret, D., and Buffle, J., 1994, Submicron particles in the Rhine River—II. Comparison of field observations and model predictions, Wat. Res. 28: 103–118.CrossRefGoogle Scholar
  67. Ogawa, H., and Ogura, N., 1992, Comparison of two methods for measuring dissolved organic carbon in the sea water, Nature 356: 696–698.CrossRefGoogle Scholar
  68. Passow, U., Alldredge, A. L., and Logan, B. E., 1994, The role of particulate carbohydrate exudates in flocculation of diatom blooms, Deep-Sea Res. 41: 335–357.CrossRefGoogle Scholar
  69. Peitzer, E. T., and Hayward, N. A., 1996, Spatial and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992, Deep-Sea Res. 43: 1155–1180.CrossRefGoogle Scholar
  70. Pomeroy, L. R., and Deibel, D., 1986, Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters, Science 233: 359–361.PubMedCrossRefGoogle Scholar
  71. Porter, K., and Feig, Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.CrossRefGoogle Scholar
  72. Posch, T., and Arndt, H., 1996, Uptake of sub-micrometre and micrometre-sized detrital particles by bacterivorous and omnivorous ciliates, Aqual. Microb. Ecol. 10: 45–53.CrossRefGoogle Scholar
  73. Proctor, L. M., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature 343: 60–62.CrossRefGoogle Scholar
  74. Rees, T. F., 1990, Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions, Water Resources Res. 26: 2777 2781.Google Scholar
  75. Santschi, P. H., Guo, L., Baskaran, M., Trumbore, S., Southon, J., Bianchi, T. S., Honeyman, B., and Cifuentes, L., 1995, Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments, Geochim. Cosmochim. Act. 59: 625–631.CrossRefGoogle Scholar
  76. Sherr, E. B., 1988, Direct use of high molecular weight polysaccharide by heterotrophic flagellates, Nature 335: 348–351.CrossRefGoogle Scholar
  77. Shimeta, J., 1993, Diffusional encounter of submicrometer particles and small cells by suspension feeders, Limnol. Oceanogr. 38: 456–465.CrossRefGoogle Scholar
  78. Shimeta, J., and Jumars, P. A., 1991, Physical mechanisms and rates of particle capture by suspension-feeders, Oceanogr. Mar. Biol. Annu. Rev. 29: 191–257.Google Scholar
  79. Siegenthaler, U., and Sarmiento, J. L., 1993, Atmospheric carbon dioxide and the ocean, Nature 365: 119–125.CrossRefGoogle Scholar
  80. Sieracki, M. E., and Viles, C. L., 1992, Distributions and fluorochrome staining properties of submicrometer particles and bacteria in the North Atlantic, Deep-Sea Res. 39: 1919–1929.CrossRefGoogle Scholar
  81. Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992, Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution, Nature 359: 139–142.CrossRefGoogle Scholar
  82. Tanoue, E., 1995, Detection of dissolved protein molecules in oceanic waters, Mar. Chem. 51: 239–252.CrossRefGoogle Scholar
  83. Tanoue, E., Nishiyama, S., Kamo, M., and Tsugita, A., 1995, Bacterial membranes: Possible source of a major dissolved protein in seawater, Geochim. Cosmochim. Act. 59: 2643–2648.CrossRefGoogle Scholar
  84. Taylor, G. T., 1995, Microbial degradation of sorbed and dissolved protein in seawater, Limnol. Oceanogr. 40: 875–885.CrossRefGoogle Scholar
  85. Tranvik, L. J., 1994, Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy, Appl. Environ. Microbial. 60: 1884–1888.Google Scholar
  86. Tranvik, L. J., Sherr, E. B., and Sherr, B. F., 1993, Uptake and utilization of “colloidal DOM” by heterotrophic flagellates in seawater, Mar. Ecol. Prog. Ser. 92: 301–309.CrossRefGoogle Scholar
  87. Turk, V., Rehnstam, A.-S., Lundberg, E., and Hagstrom, A., 1992, Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorous regeneration, Appl. Environ. Microbial. 58: 3744–3750.Google Scholar
  88. Viles, C. L., and Sieracki, M. E., 1992, Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy, Appl. Environ. Microbial. 58: 584–592.Google Scholar
  89. Waterbury, J. B., Watson, S. W., Buillard, R. R. L., and Brand, L. E., 1979, Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium, Nature 227: 293–294.CrossRefGoogle Scholar
  90. Wells, M. L., and Goldberg, E. D., 1991, Occurrence of small colloids in sea water, Nature 353: 342–344.CrossRefGoogle Scholar
  91. Wells, M. L., and Goldberg, E. D., 1992, Marine submicron particles, Mar. Chem. 40: 5–18.CrossRefGoogle Scholar
  92. Wells, M. L., and Goldberg, E. D., 1993, Colloid aggregation in seawater, Mar. Chem. 41: 353–358.CrossRefGoogle Scholar
  93. Wells, M. L., and Goldberg, E. D., 1994, The distribution of colloids in the North Atlantic and Southern Ocean, Limnol. Oceanogr. 39: 286–302.CrossRefGoogle Scholar
  94. Williams, P. J. leB., 1995, Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and consequential effect on net C/N assimilation ratios, Mar. Chem. 51: 17–29.CrossRefGoogle Scholar
  95. Williams, P. M., and Druffel, E. R. M., 1987, Radiocarbon in dissolved organic matter in the central North Pacific Ocean, Nature 330: 246–248.CrossRefGoogle Scholar
  96. Williams, P. M., and Druffel, E. R. M., 1988, Dissolved organic matter in the ocean: comments on a controversy, Oceanography 1: 14–17.CrossRefGoogle Scholar
  97. Yamamoto, S., and Ishiwatari, R., 1989, A study of the formation mechanisms of sedimentary humic substances Il. protein-based melanoidin model, Org. Geochem. 14: 479–489.CrossRefGoogle Scholar
  98. Zweifel, U. L., and Hagstrom, A., 1995, Total counts of marine bacteria include a large fraction of non-nucleoid containing “ghosts,” Appl. Environ. Microhiol. 61: 2180–2185.Google Scholar
  99. Zweifel, U. L., Wikner, J., and Hagstrom, A., 1995, Dynamics of dissolved organic carbon in a coastal ecosystem, Limnol. Oceanogr. 40: 299–305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Toshi Nagata
    • 1
  • David L. Kirchman
    • 2
  1. 1.Ocean Research InstituteUniversity of TokyoNakano, Tokyo 164Japan
  2. 2.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations