Advertisement

Effects of UV Radiation on Phytoplankton

  • Donat-P. Häder
Part of the Advances in Microbial Ecology book series (AMIE, volume 15)

Abstract

Ozone is distributed throughout the atmosphere with its highest concentration in the stratosphere between about 15–40 km. Both its production and breakdown are powered by solar ultraviolet radiation, though at different wavelengths. The cycle of generation and destruction keeps the concentration constant, but on an extremely low level: If compressed under atmospheric pressure, the total ozone layer would be on the order of a few millimeters thick. Therefore, gaseous pollutants such as chlorinated fluorocarbons (CFCs) can effectively decrease ozone density, even though they are emitted in relatively small amounts (about 1 million tons per year).

Keywords

Solar Radiation Ultraviolet Radiation Ozone Depletion Stratospheric Ozone Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. G., Toohey, D. W., and Brune, W. H., 1991, Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss, Science 251. 39–46.PubMedGoogle Scholar
  2. Atkinson, R. J., Matthews, W. A., Newman, P. A., and Plumb, R. A., 1989, Evidence of the mid-latitude impact of Antarctic ozone depletion, Nature 340: 290–294.Google Scholar
  3. Baker, K. S., and Smith, R. C., 1982, Spectral irradiance penetration in natural waters, in: The Role of Solar Ultraviolet Radiation in Marine Ecosystems ( J. Calkins, ed.), Plenum Press, New York, pp. 233–246.Google Scholar
  4. Bean, B., 1985, Microbial geotaxis, in: Membranes and Sensory Transduction ( G. Colombetti and F. Lenci, eds.), Plenum Press, New York, pp. 163–198.Google Scholar
  5. Beggs, C. J., Schneider-Ziebert, U., and Wellmann, E., 1986, UV-B radiation and adaptive mechanisms in plants, in: Stratospheric Ozone Reduction. Solar Ultraviolet Radiation and Plant Life (R. C. Worrest and M. M. Caldwell, eds.) NATO ASI Series, Vol. G8, Springer, Heidelberg, pp. 235–250.Google Scholar
  6. Bhattacharjee, S. K., and David, K. A. V., 1987, UV-sensitivity of cyanobacterium Anac_vstis nidulans: Part 11—a model involving photosystem (PSII) reaction centre as lethal target and herbicide binding high turnover B protein as regulator of dark repair, Indian J. Exp. Biol. 25: 837–842.Google Scholar
  7. Bhattacharjee, S. K., Mathur, M., Rane, S. S., and David, K. A. V., 1987, UV-sensitivity of cyanobacterium Anacystis nidulans: Part 1—evidence for photosystem II (PSII) as a lethal target and constitutive nature of a dark-repair system against damage to PSII, Indian J. Exp. Biol. 25: 832–836.Google Scholar
  8. Bidigare, R. R., 1989, Potential effects of UV-B radiation on marine organisms of the Southern Ocean: Distributions of phytoplankton and krill during Austral spring, Photochem. Photohiol. 50: 469–477.Google Scholar
  9. Blumthaler, M., and Ambach, W., 1990, Indication of increasing solar ultraviolet-B radiation flux in alpine regions, Science 248: 206–208.PubMedGoogle Scholar
  10. Brasseur, G. P., 1989, A dent outside the hole?, Nature 342: 225–226.Google Scholar
  11. Brodhun, B., and Häder, D.-P., 1990, Photoreceptor proteins and pigments in the paratlagellar body of the flagellate Euglena gracilis, Photochem. Photohiol. 52: 865–871.Google Scholar
  12. Brown, P. C., and Cochrane, K. L., 1991, Chlorophyll a distribution in the southern Benguela: Possible effects of global warming on phytoplankton and its implication for pelagic fish, SuidAfrikaanse Tydskrif vir Wetenskap 87: 233–242.Google Scholar
  13. Brune, W. H., Anderson, J. G., Toohey, D. W., Fahey, D. W., Kawa, S. R., Jones, R. L., McKenna, D. S., and Poole, L. R., 1991, The potential for ozone depletion in the Arctic polar stratosphere, Science 252: 1260–1266.PubMedGoogle Scholar
  14. Büchel, C., and Wilhelm, C., 1993, In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspective, Photochem. Photobiol. 58: 137–148.Google Scholar
  15. Burns, N. M., and Rosa, F.. 1980, In situ measurements of the settling velocity of organic carbon particles and ten species of phytoplankton, Limnol. Oceanogr. 2: 855–864.Google Scholar
  16. Cabrera, S., and Montecino, V., 1987, Productividad primaria en ecosistemas limnicos, Arch. Biol. Med. Exp. 20: 105–116.Google Scholar
  17. Calkins, J., and Thordardottir, T., 1980, The ecological significance of solar UV-B radiations on aquatic organisms, Nature 283: 563–566.Google Scholar
  18. Carpenter, E. J., and Romans, K., 1991, Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean, Science 254: 1356–1358.PubMedGoogle Scholar
  19. Carreto, J. J., Carignana, M. O., Daleo, G., and de Marco, S. G., 1990, Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds, J. Plankton Res. 12: 909–921.Google Scholar
  20. Cullen, J. J., and Lesser, M. P., 1991, Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom, Marine Biol. 111: 183–190.Google Scholar
  21. Cullen, J. C., Neale P. J., and Lesser, M. P., 1992, Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation, Science 258: 646–650.PubMedGoogle Scholar
  22. Donkor, V., and Häder, D.-P., 1991, Effects of solar and ultraviolet radiation on motility, photo-movement and pigmentation in filamentous, gliding cyanobacteria, FEMS Microbiol. Ecol. 86: 159–168.Google Scholar
  23. Donkor, V. A., Amewowor, D. H. A. K., and Häder, D.-P.,1993a, Effects of tropical solar radiation on the motility of filamentous cyanobacteria, FEMS Microbiol. Ecol. 12: 143–148.Google Scholar
  24. Donkor, V.A., Amewowor, D. H. A. K., and Häder, D.-P.,1993b, Effects of tropical solar radiation on the velocity and photophobic behavior of filamentous gliding cyanobacteria, Acta Protozool. 32: 67–72.Google Scholar
  25. Eggersdorfer, B., and Häder, D.-P., 1991a, Phototaxis, gravitaxis and vertical migrations in the marine dinotlagellate, Prorocentrum micans, Eur. J. Biophys. 85: 319–326.Google Scholar
  26. Eggersdorfer, B., and Häder, D.-P., 1991b, Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellates, Peridinium faeroense and Amphidinium caterii, Acta Protozoal. 30:63–71.Google Scholar
  27. Ekelund, N. G. A., 1991, The effect of UV-B radiation on dinoflagellates, J. Plant Physiol. 138: 274–278.Google Scholar
  28. El Sayed, S. Z., 1988a, Fragile life under the ozone hole, Natural History 97: 73–80.Google Scholar
  29. El Sayed, S. Z., 19886, Productivity of the Southern Ocean: A closer look, Comp. Biochem. Physiol. 90B: 589–498.Google Scholar
  30. Esquivel, D. M. S., and de Barros, H. G. P. L., 1986, Motion of magnetotactic microorganisms, J. Exp. Biol. 121: 153–163.Google Scholar
  31. Frederick, J. E., 1990, Trends in atmospheric ozone and ultraviolet radiation: Mechanisms and observations for the northern hemisphere, Photochem. Photobiol. 51: 757–763.Google Scholar
  32. Frederick, J. E., Snell, H. E., and Haywood, E. K., 1989, Solar ultraviolet radiation at the earth’s surface, Photochem. Photohiol. 50: 443–450.Google Scholar
  33. Frederick, J. E., Weatherhead, E. C., and Haywood, E. K., 1991, Long-term variations in ultraviolet sunlight reaching the biosphere: Calculations for the past three decades, Photochem. Photohiol. 54: 781–788.Google Scholar
  34. Galland, P., Keiner, P., Dörnemann, D., Senger, H., Brodhun, B., and Häder, D.-P., 1990, Pterinand flavin-like fluorescence associated with isolated flagella of Euglena gracilis, Photochem. Photohiol. 51: 675–680.Google Scholar
  35. Garcia-Pichel, F., and Castenholz, R. W., 1991, Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment, J. Phycol. 27: 395–409.Google Scholar
  36. Gaundry, A., Monfray, P., Polian, G., and Lanabert, G., 1987, The 1982–1983 El Nino: a 6 billion ton CO, release, Tellus 39B: 209–213.Google Scholar
  37. Genty, B. E., Briantais, J. M., and Baker, N. R., 1989, Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions, Plant Physiol. Biochem. 28:1— 10Google Scholar
  38. Gerber, S., and Hader, D.-P., 1992, UV effects on photosynthesis, proteins and pigmentation in the flagellate Euglena gracilis: biochemical and spectroscopic observations, Biochem. System. Ecol. 20: 485–492.Google Scholar
  39. Gerber, S., and Häder, D.-P., 1993, Effects of solar irradiation on motility and pigmentation of three species of phytoplankton, Env. Exp. Biol. 33: 515–521.Google Scholar
  40. Gieskes, W. C., and Kraay, G. W., 1990, Transmission of ultraviolet light in the Weddell Sea. Report on the first measurements made in Antarctic, Biomass Newsletter 12: 12–14.Google Scholar
  41. Gosink, J. J., Irgens, R. L., and Staley, J. T., 1993, Vertical distribution of bacteria in Arctic sea ice, FEMS Microbiol. Ecol. 102: 85–90.Google Scholar
  42. Grant, W. B., 1988, Global stratospheric ozone and UVB radiation, Science 242: 1111.PubMedGoogle Scholar
  43. Häberlein, A., and Häder, D.-P., 1992, UV effects on photosynthetic oxygen production and chromoprotein composition in the freshwater flagellate Crvptomonas S2, Acta Protozool. 31: 85–92.Google Scholar
  44. Hader, D.-P., 1985, Effects of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis, Arch. Microbiol. 141: 159–163.Google Scholar
  45. Hader, D.-P., I986a, Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis, Photochem. Photobiol. 44: 651–656.Google Scholar
  46. Häder, D.-P., 1986b, The effect of enhanced solar UV-B radiation on motile microorganisms, in: Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, ( R.C. Worrest, and M.M. Caldwell, eds.), Springer Verlag, New York, pp. 223–233.Google Scholar
  47. Häder, D.-P., 1987, Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis, Arch. Microbiol. 147: 179–183.PubMedGoogle Scholar
  48. Häder, D.-P., 1988a, Ecological consequences of photomovement in microorganisms, J. Photochem. Photobiol. B: Biol. 1: 385–414.Google Scholar
  49. Hader, D.-P., 1988b, Signal perception and amplification in photoresponses of cyanobacteria, Biophvs. Chem. 29: 155–159.Google Scholar
  50. Hader, D.-P., 1991a, Effects of enhanced solar ultraviolet radiation on aquatic ecosystems, in: Biophysics of Photoreceptors and Photomovements in Microorganisms ( F. Lenci, F. Ghetti, G. Colombetti, D.-P. Häder, and P.-S. Song, eds.), Plenum Press, New York, pp. 157–172.Google Scholar
  51. Häder, D.-P., 1991b, Phototaxis and gravitaxis in Euglena gracilis, in: Biophysics of Photoreceptors and Photomovements in Microorganisms, ( F. Lenci, F. Ghetti, G. Colombetti, D.-P. Häder, and P.-S. Song, eds.), Plenum Press, New York, pp. 203–221.Google Scholar
  52. Hader, D.-P., and Brodhun, B., 1991, Effects of ultraviolet radiation on the photoreceptor proteins and pigments in the paratlagellar body of the flagellate, Euglena gracilis, J. Plant Phys. 137: 641–646.Google Scholar
  53. Häder, D.-P., and Hader, M., 1988a, Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation, Arch. Microbiol. 150: 20–25.Google Scholar
  54. Hader, D.-P., and Häder, M., I988b, Ultraviolet-B inhibition of motility in green and dark bleached Euglena gracilis, Current Microbiol. 17: 215–220.Google Scholar
  55. Häder, D.-P., and Häder, M.A., 1989e, Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates, Environ. Exp. Bot. 29: 273–282.Google Scholar
  56. Häder, D.-P., and Hader, M., 1989a, Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Crvptomonas, Botanica Acta 102: 236–240.Google Scholar
  57. Häder, D.-P., and Häder, M. A., 1989b, Effects of solar and artificial radiation on motility and pigmentation in Cyanophora paradoxa, Arch. Microbiol. 152: 453–457.Google Scholar
  58. Hader, D.-P., and Häder, M., 1990a, Effects of solar radiation on motility, photomovement and pigmentation in two strains of the cyanobacterium, Phormidium uncinatum, Acta Protozool. 29: 291–303.Google Scholar
  59. Häder, D.-P., and Häder, M., 19906, Effects of UV radiation on motility, photo-orientation and pigmentation in a freshwater Crvptomonas, J. Photochem. Photobiol. B: Biol. 5: 105–114.Google Scholar
  60. Häder, D.-P., and Häder, M., 1991a, Effects of solar and artificial UV radiation on motility and pigmentation in the marine Crvptomonas maculata, Env. Exp. Bot. 31: 33–41.Google Scholar
  61. Häder, D.-P., and Häder, M. A., 1991b, Effects of solar radiation on motility in Stentor coeruleus, Photochem. Photobiol. 54: 423–428.Google Scholar
  62. Häder, D.-P., and Hoiczyk, E., 1992, Gliding motility, in: Algal Cell Motility ( M. Melkonian, ed.), Chapman and Hall, New York, pp. 1–38.Google Scholar
  63. Häder, D.-P., and Liu, S.-L., 1990a, Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense, FEMS Microbiol. Ecol. 73: 331–338.Google Scholar
  64. Häder, D.-P., and Liu, S.-M., 1990b, Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation, Curr. Microbiol. 21: 161–168.PubMedGoogle Scholar
  65. Häder, D.-P., and Schäfer, J., 1994a, In-situ measurement of photosynthetic oxygen production in the water column, Environm. Monit. Assessm. 32: 259–268.Google Scholar
  66. Häder, D.-P., and Schäfer, J., 1994b, Photosynthetic oxygen production in macroalgae and phytoplankton under solar irradiation, J. Plant Physiol. 144: 293–299.Google Scholar
  67. Häder, D.-P., and Worrest, R. C., 1991, Effects of enhanced solar ultraviolet radiation on aquatic ecosystems., Photochem. Photobiol. 53: 717–725.Google Scholar
  68. Häder, D.-P., Colombetti, G., Lenci, F., and Quaglia, M., 1981, Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica, Arch. Microbiol. 130: 78–82.Google Scholar
  69. Häder, D.-P., Watanabe, M., and Furuya, M., 1986, Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation, Plant Cell Physiol. 27: 887–894.Google Scholar
  70. Häder, D.-P., Rhiel, E., and Wehrmeyer, W., 1988, Ecological consequences of photomovement and photobleaching in the marine flagellate Crvptomonas maculata, FEMS Microbiol. Ecol. 53: 918.Google Scholar
  71. Häder, D.-P., Worrest, R. C., and Kumar, H. D., 1989, Aquatic ecosystems, UNEP Environmental Effects Panel Report, pp. 39–48.Google Scholar
  72. Häder, D.-P., Häder, M., Liu, S.-M., and Ullrich, W., 1990a, Effects of solar radiation on photo- orientation, motility and pigmentation in a freshwater Peridinium, BioSystems 23: 335–343.PubMedGoogle Scholar
  73. Häder, D.-P., Liu, S.-M., Häder, M., and Ullrich, W., 1990b, Photoorientation, motility and pigmentation in a freshwater Peridinium affected by ultraviolet radiation, Gen. Physiol. Biophys. 9: 361–371.PubMedGoogle Scholar
  74. Häder, D.-P., Worrest, R. C., and Kumar, H. D., 1991, Aquatic ecosystems, UNEP Environmental Effects Panel Report, pp. 33–40.Google Scholar
  75. Häder, D.-P., Worrest, R. C., Kumar, H. D., and Smith, R. C., 1994, Effects of increased solar ultraviolet radiation on aquatic ecosystems, UNEP Environmental Effects Panel Report, pp. 6577.Google Scholar
  76. Häder, D.-P., Worrest, R. C., Kumar, H. D., and Smith, R. C., 1995, Effects of increased solar ultraviolet radiation on aquatic ecosystems, AMBIO 24: 174–180.Google Scholar
  77. Hardy, J., and Gucinski, H., 1989, Stratospheric ozone depletion: implications for marine ecosystems, Oceanogr. Mag. 2: 18–21.Google Scholar
  78. Heath, D. F., 1988, Non-seasonal changes in total column ozone from satellite observations, 197086, Nature 332: 219–227.Google Scholar
  79. Helbing, E. W., Villafane, V., Ferrario, M., and Holm-Hansen, 0., 1991, Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species, Marine Ecology Progress Series 80: 89–100.Google Scholar
  80. Hirosawa, T., and Miyachi, S., 1983, Inactivation of Hill reaction by long-wavelength ultraviolet radiation (UV-A) and its photoreactivation by visible light in the cyanobacterium, Anacystis nidulans, Arch. Microbiol. 135: 98–102.Google Scholar
  81. Hofmann, D. J., and Deshler, T., 1991, Evidence from balloon measurements for chemical depletion of stratospheric ozone in the Arctic winter of 1989–90, Nature 349: 300–305.Google Scholar
  82. Hough, A. M., and Derwent, R. G., 1990, Changes in the global concentration of tropospheric ozone duc to human activities, Nature 344: 645–648.Google Scholar
  83. Houghton, R. A., and Woodwell, G. M., 1989, Global climatic change, Sci. Amer. 260: 18–26.Google Scholar
  84. Huang, T.-C., and Chow, T.-J., 1988, Comparative studies of some nitrogen-fixing unicellular cyanobacteria isolated from rice fields, J. Gen. Microbiol. 134: 3089–3097.Google Scholar
  85. Ignatiades, L., 1990, Photosynthetic capacity of the surface microlayer during the mixing period, J. Plankton Res. 12: 851–860.Google Scholar
  86. Ito, T., 1983, Photodynamic agents as tools for cell biology, in: Photochemical and Photobiological Reviews (K.C. Smith, ed.), Volume 7, Plenum Press, New York, pp. 141–186.Google Scholar
  87. Jerlov, N. G., 1970, Light—general introduction, in: Marine Ecology (O. Kinne, ed.), Volume I, Wiley, New York, pp. 95–102.Google Scholar
  88. Karentz, D., 1991, Ecological considerations of Antarctic ozone depletion, Antarctic Sci. 3:3—I 1. Karentz, D., and Lutze, L. H., 1990, Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments, Limnol. Oceanogr. 35: 549–561.Google Scholar
  89. Karentz, D., Cleaver, J. E., and Mitchell, D. L., 1991a, DNA damage in the Antarctic, Nature 28: 350.Google Scholar
  90. Karentz, D., Cleaver, J. E., and Mitchell, D. L., 1991b, Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation, J. Phycol. 27: 326–341.Google Scholar
  91. Karentz, D., Mc Euen, F. S., Land, M.C., and Dunlap, W. C., 1991e, Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure, Marine Biology 108: 157–166.Google Scholar
  92. Kerr, R. A., 1990, Another deep Antarctic ozone hole, Science 250: 370.PubMedGoogle Scholar
  93. Kumar, A., and Kumar, H. D., 1988, Nitrogen fixation by blue-green algae, in: Plant Physiology Research ( S.P. Seu, ed.), Society for Plant Physiology and Biochemistry, First International Congress of Plant Physiology, New Delhi, pp. 15–22.Google Scholar
  94. Lindholm, T., 1992, Ecological role of depth maxima of phytoplankton, Arch. Hydrohiol. Beih. Ergebn. Limnol. 35: 33–45.Google Scholar
  95. Lohrenz, S. E., Arnone, R. A., Wiesenburg, D. A., and DePalma, I. P., 1988, Satellite detection of transient enhanced primary production in the western Mediterranean Sea, Nature 335: 245–247.Google Scholar
  96. Lorenzen, C. J., 1979, UV radiation and phytoplankton photosynthesis, Limnol. Oceanogr. 24: 1117–1120.Google Scholar
  97. Lubin, D., Frederick J. E., Booth, C. R., Lucas, T., and Neuschuler, D., 1989, Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica, Geophys. Res. Lett. 16: 783–785.Google Scholar
  98. MacNab, R. M., 1985, Biochemistry of sensory transduction in bacteria, in: Sensory Perception and Transduction in Aneural Organisms ( G. Colombetti, F. Lenci, and P.-S. Song, eds.), Plenum Press, New York, pp. 31–46.Google Scholar
  99. Madronich, S., McKenzie, R. L., Caldwell, M. M. and Björn, L. 0., 1994, Changes in ultraviolet radiation reaching the Earth’s surface, Environmental Effects Panel Report, United Nations Environmental Program, pp. I - 13.Google Scholar
  100. Maske, H., 1984, Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake, J. Plankton Res. 6: 351–357.Google Scholar
  101. McLeod, G. C. and McLachlan, J., 1959, The sensitivity of several algae to ultraviolet radiation of 2537 A. Physiol. Plant. 12: 306–309.Google Scholar
  102. Mitchell, B. G., 1990, Action spectra of ultraviolet photoinhibition of Antarctic phytoplankton and a model of spectral diffuse attenuation coefficients, in: Proceedings of Workshop on Response of Marine Phytoplankton to Natural Variations in UV-B Flux, Scripps Institution of Oceanography, La Jolla, Appendix H.Google Scholar
  103. Murali, N. S., and Teramura, A. H., 1985, Effects of ultraviolet-B irradiance on soybean. VI. Influence of phosphorus nutrition on growth and tlavonoid content, Physiol. Plant. 63: 413–416.Google Scholar
  104. Nultsch, W., and Agel, G., 1986, Fluence rate and wavelength dependence of photobleaching in the cyanobacterium Anabaena variabilis, Arch. Microbiol. 144: 268–271.Google Scholar
  105. Nultsch, W., and Häder, D.-P., 1988, Photomovement in motile microorganisms ll, Photochem. Photobiol. 47: 837–86.PubMedGoogle Scholar
  106. Padhy, R. N., 1985, Cyanobacteria employed as fertilizers and waste disposers, Nature 317: 475476.Google Scholar
  107. Paerl, H. W., and Bebout, B. M., 1988, Direct measurement of 02-depleted microzones in marine Oscillatoria: relation to NZ fixation, Science 241: 441–445.Google Scholar
  108. Peak, J. G., Peak, M. J., Sikorski, R. S., and Jones, C. A., 1985, Induction of DNA—protein crosslinks in human cells by ultraviolet and visible radiations: action spectrum, Photochem. Photobiol. 41: 295–302.PubMedGoogle Scholar
  109. Piazena, H., and Häder, D.-P., 1994, Penetration of solar UV irradiation in coastal lagoons of the Southern Baltic Sea and its effect on phytoplankton communities, Photochem. Photobiol. 60: 463–469.Google Scholar
  110. Paff, K. L., 1985, Temperature sensing in microorganisms, in: Sensory Perception and Transduction in Aneural Organisms ( G. Colombetti, F. Lenci, and P.-S.Song, eds.), Plenum Press, New York, pp. 299–307.Google Scholar
  111. Proffitt, M. H., Fahey, D. W., Kelly, K. K., and Tuck, A. F., 1989, High-latitude ozone loss outside the Antarctic ozone hole, Nature 342: 233–237.Google Scholar
  112. Raven, J. A., 1991, Responses of aquatic photosynthetic organisms to increased solar UVB, J. Photochem. Photobiol., B: Biol. 9: 239–244.Google Scholar
  113. Renger, G., and Schreiber, U. 1986, Practical applications of flouromctric methods to algae and higher plant research, in: Light Emission by Plants and Bacteria, Volume 47 ( Govindjee, J. Amesz, and D.C. Fork, eds.), Academic Press, New York, pp. 587–619.Google Scholar
  114. Renger, G., Völker, M., Eckert, H. J., Fromme, R., Hohm-Veit, S., and Gräber, P., 1989, On the mechanisms of photosystem II deterioration by UV-B irradiation, Photochem. Photobiol. 49: 97–105.Google Scholar
  115. Rowland, F. S., 1989, Chlorofluorocarbons and the depletion of stratospheric ozone, Am. Scientist 77: 36–46.Google Scholar
  116. Schäfer, J., Sebastian, C., and Häder, D.-P., 1993, Effects of solar radiation on motility, orientation, pigmentation and photosynthesis in a green dinoflagellate Gymnodinium, Acta Protozool. 33: 59–65.Google Scholar
  117. Schneider, S. H., 1989, The changing climate, Sci. Am. 261: 38–47.Google Scholar
  118. Schnell, R. C., Liu, S. C., Oltmans, S. J., Stone, R. S., Hofmann, D. J., Dutton, E. G., Deshler, T., Sturges, W. T., Harder, J. W., Sewell, S. D., Trainer, M., and Harris, J. M., 1991, Decrease of summer tropospheric ozone concentrations in Antarctica, Nature 351: 726–729.Google Scholar
  119. Schoeberl, M. R., and Hartmann, D. L., 1991, The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions, Science 251: 46–52.PubMedGoogle Scholar
  120. Schreiber, U., Schliwa, U., and Bilger, W., 1986, Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosvnth. Res. 10: 51–62.Google Scholar
  121. Schreiber, U., Bilger, W., and Neubauer, C., 1994, Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, in: Ecophysiology of Photosynthesis. Ecological Studies, Volume 100 ( E. D. Schulze, and M. M. Caldwell, eds.), Springer Verlag, Berlin, pp. 49–70.Google Scholar
  122. Schreiber, U., Endo, T., Mi, H., and Asada, K., 1995, Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria, Plant Cell Physiol. 36: 873–882.Google Scholar
  123. Shibata, H., Baba, K., and Ochiai, H., 1991, Near-UV irradiation induces shock proteins in Anacysti.s nidulans R-2; possible role of active oxygen, Plant Cell Physiol. 32: 771–776.Google Scholar
  124. Siebeck, O., and Böhm, U., 1987, Untersuchungen zur Wirkung der UV-B-Strahlung auf kleine Wassertiere, BPT Bericht, Gesellschaft für Strahlen-und Umweltforschung, Munich, pp. 84.Google Scholar
  125. Sinha, R. P, and Kumar, A., 1992, Screening of blue-green algae for biofertilizer, in: Proceedings of the National Seminar on Organic Farming ( P. L. Patil, ed.), Pune, India, 95–97.Google Scholar
  126. Sinha, R. P., Kumar, H. D., Kumar, A., and Hader, D.-P., 1995a, Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria, Acta Protozoal. 34: 187–192.Google Scholar
  127. Sinha, R. P., Lebert, M., Kumar, A., Kumar, H. D., and Hader, D.-P.,1995b, Spectroscopic and biochemical analyses of UV effects of phycobiliproteins of Anahaena sp. and Nostoc carmium, Bot. Acta 108: 87–92.Google Scholar
  128. Smith, R., 1989, Ozone, middle ultraviolet radiation and the aquatic environment, Photochem. Photohiol. 50: 459–468.Google Scholar
  129. Smith, R. C., and Baker, K. S., 1978, Penetration of UV-B and biologically effective dose-rates in natural waters, Photochem. Photohiol. 29: 311–323.Google Scholar
  130. Smith, R. C., Baker, K. S., Holm-Hansen, O., and Olson, R., 1980, Photoinhibition of photosynthesis in natural waters. Photochem. Photohiol. 31: 585–592.Google Scholar
  131. Smith, R. C., Prezelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., Maclntyre, S., Matlick, H. A.. Menzies, D., Ondrusek, M., Wan, Z., and Waters, K. J., 1992, Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science 255: 952–959.Google Scholar
  132. Stewart, W. D. P., 1980, Some aspects of structure and function in N,-fixing cyanobacteria, Annu. Rev. Microbiol. 34: 497–536PubMedGoogle Scholar
  133. Storch, T. A., Saunders, G. W., and Ostrofsky, M. L., 1990, Diel nitrogen fixation by cyanobacterial surface blooms in Sanctuary Lake, Pennsylvania, Appt Environm. Microbiol. 56: 466–471.Google Scholar
  134. Tevini, M., Thoma, U., and Iwanzik, W., 1983, Effects of enhanced UV-B radiation on germination, seedling growth, leaf anatomy and pigments of some crop plants, Z. Pflanzenphysiol. 109: 435–448.Google Scholar
  135. Ting, C. S., and Owens, T. G., 1992, Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae, Plant Physiol. 100: 367–373.PubMedGoogle Scholar
  136. Tirlapur, U., Scheuerlein, R., and Hader, D.-P., 1993, Motility and orientation of a dinotlagellate, Gymnodinium, impaired by solar and ultraviolet radiation, FEMS Microbial. Ecol. 102: 167–174.Google Scholar
  137. Vaida, V., Solomon, S., Richard, E. C., Rühl, E., and Jefferson, A., 1989, Photoisomerization of OCIO: a possible mechanism for polar ozone depletion, Nature 342: 405–408.Google Scholar
  138. Venkataraman, G. S., 1981, Blue-green algae: a possible remedy to nitrogen scarcity, Curr. Sci. 50: 253–256.Google Scholar
  139. Viollier, M., Tanré, D., and Deschampes, P. Y., 1980, An algorithm for remote sensing of water color from space, Boundary-Laver Meteorol. 18: 247–267.Google Scholar
  140. Vosian, J. H., Döhler, G., and Nieuwland, G., 1990, Effect of UV-B irradiance on the ATP content of microorganisms of the Weddell Sea Antarctica, Neth. J. Sea Res. 25: 391–394.Google Scholar
  141. Walsby, A. E., Kinsman, R., and George, K. I., 1992, The measurement of gas volume and buoyant density in planktonic bacteria, J. Microbiol. Meth. 15: 293–309.Google Scholar
  142. Webb, A. R., 1991, Solar ultraviolet radiation in Southeast England: the case for spectral measurements, Photochem. Photohiol. 54: 789–794.Google Scholar
  143. Wei, D.-W., 1991, On the formation of the Antarctic ozone hole and its trend predictions, Science in China B 34: 95–103.Google Scholar
  144. Weis, E., and Ben-y, J., 1987, Quantum efficiency of photosystem Il in relation to energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys. Acta 894: 198–208.Google Scholar
  145. Worrest, R. C., 1982, Review of literature concerning the impact of UV-B radiation upon marine organisms, in: The Role of Solar Ultraviolet Radiation in Marine Ecosystems (J. Calkins, ed.), Plenum Press, New York, pp. 429–457.Google Scholar
  146. Worrest R. C., van Dyke, H., and Thomson, D., 1978, Impact of enhanced simulated solar ultraviolet radiation upon a marine community, Photochem. Photobiol. 27: 471–478.Google Scholar
  147. Worrest, R. C., Brooker, D. L., and van Dyke, H., 1980, Results of a primary productivity study as affected by the type of glass in the culture bottle, Limnol. Oceanogr. 25: 360–364.Google Scholar
  148. Worrest, R. C., Thompson, B. E., and van Dyke, H., 1981a, Impact of UV-B radiation upon estuarine microcosms, Photochem. Photobiol. 33: 861–867.Google Scholar
  149. Worrest, R. C., Wolniakowski, K. U., Scott, J. D., Brooker, D. L., Thompson B. E., and van Dyke, H., 1981b, Sensitivity of marine phytoplankton to UV-B radiation: Impact upon a model ecosystem, Photochem. Photobiol. 33: 223–227.Google Scholar
  150. Yamamoto, K. M., Satake, M., Shinagawa, H., and Fujiwara, Y., 1983, Amelioration of the ultraviolet sensitivity of an Escherichia coli recA mutant in the dark by photoreactivating enzyme, Mol. Gen. Genet. 190:511-SIS.Google Scholar
  151. Yasuhira, S., Mitani, H., and Shima, A., 1992, Enhancement of photorepair of ultraviolet-induced pyrimidine dimers by preillumination with fluorescent light in the goldfish cell line. The relationship between survival and yield of pyrimidine dimers, Photochem. Photobiol. 55: 97–101.PubMedGoogle Scholar
  152. Zündorf, I., and Häder, D.-P., 1991, Biochemical and spectroscopic analysis of UV effects in the marine flagellate Crvptomonas maculate, Arch. Microbial. 156: 405–411.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Donat-P. Häder
    • 1
  1. 1.Institut für Botanik und Pharmazeutische BiologieFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations