Effect of Mercuric Chloride on Angiotensin II-Induced Ca++ Transient in the Proximal Tubule of Rats

  • Hitoshi Endou
  • Kyu Yong Jung
Part of the Rochester Series on Environmental Toxicity book series (RSET)


Angiotensin II (AII) is a powerful agent in the regulation of renal functions, and possesses its receptor(s) within the kidney. The second messenger of AII is considered to be Ca++. Since mercuric chloride is one of nephrotoxic heavy metals, its effects on All-mediated signal transduction have been investigated.

Rat kidneys were treated with collagenase, and microdissection was made for isolating defined nephron segments. [Ca++]i was determined using fluorescent indicator fura-2. In the freshly isolated early proximal tubule (S1), All-induced [Ca++]i rise was biphasic, demonstrating the two peaks corresponding to the 10−11 and 10−7M. HgCl2 (10−10 – 10−8M) potentiated the [Ca++]i increase induced by AII (10−11M) in a dose dependent manner, up to the 10−9M HgCl2. A similar effect was observed with methylmercury. To determine the mechanism of stimulatory effect of HgCl2 on 10−11M AII-induced [Ca++]i increase, nephron segments were pretreated with propranolol (10−4M), a PLC inhibitor. This stimulatory effect of HgCl2 was completely inhibited by propranolol. Moreover, 10−4M propranolol completely blocked the stimulatory effect of HgCl2 on AII-mediated inositol 1,4,5-triphosphate (IP3) production.

This study suggests for the first time that mercurial compounds stimulates the [Ca++]i increment induced by AII, possibly through an activation of phospholipase C (PLC).


Proximal Tubule Mercuric Chloride Nephron Segment Kidney Proximal Tubule Sustained Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benabe, J. E., Spry, L. A., and Morrison, A. R., 1982, Effect of angiotensin II on phosphatidylinositol and polyphosphoinositide turnover in rat kidney, J. Biol. Chem., 257:7430–7434.PubMedGoogle Scholar
  2. Blackwell, G. J., and Flower, R. J., 1983, Inhibition of phospholipase, Br. Med. Bull., 39:260–264.Google Scholar
  3. Brock, T. A., Rittenhouse, S. E., Powers, C. W., Ekstein, L. S., Gimbrone, M. A., and Alexander, R. W., 1985, Phorbol ester and 1-oleoyl-2-acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells, J. Biol. Chem., 260:14158–14162.PubMedGoogle Scholar
  4. Brunder, D. G., Dettbarn, C., and Palade, P., 1988, Heavy metal-induced Ca2+ release from sarcoplasmic reticulum, J. Biol. Chem., 263:18785–18792.PubMedGoogle Scholar
  5. Chau, L. Y. and Tai, H. H., 1982, Resolution into two different forms and study of the properties of phosphatidylinositol-specific phospholipase C from human platelet cytosol, Biochem, Biophys. Acta, 713:344–351.CrossRefGoogle Scholar
  6. Endou, H., Koseki, C., Yamada, H., and Obara, T., 1986, Evaluation of nephrotoxicity using isolated nephron segments, in: “Nephrotoxicity of Antibiotics and Immunosuppressants,” T. Tanabe, J. B. Hook, and H. Endou, eds., 207–216, Elsevier, Amsterdam.Google Scholar
  7. Goldstein, L., 1987, Renal substrate utilization in normal and acidotic rats, Am. J. Physiol, 253:F351–F357.PubMedGoogle Scholar
  8. Griendling, K. K., Rittenhouse, S. E., Brock, T. A., Ekstein, L. S., Gimbrone, M. S., and Alexander, R. W., 1986, Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells, J. Biol. Chem., 261:5901–5906.PubMedGoogle Scholar
  9. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca++ indicators with greatly improved fluorescene properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  10. Harris, P. J., and Navar, L. G., 1985, Tubular transport responses to angiotensin, Am. J. Physiol., 248:F621–630.PubMedGoogle Scholar
  11. Hinkle, P. C., and McCarty, R., 1978, How cells make ATP, Sci. Amer., 238:104–123.PubMedCrossRefGoogle Scholar
  12. Hoch, B. S., Gorfien, P. C., Linzer, D., Fusco, M. J., and Levine, S. D., 1989, Mercurial reagents inhibit flow through ADH-induced water channels in toad bladder, Am. J. Physiol., 256(25):F948–F953.PubMedGoogle Scholar
  13. Hostetler, K. Y., and Matsuzawa, Y., 1981, Studies on the mechanism of drug-induced lipidosis: Cationic amphiphilic drug inhibition of lysosomal phosphodipase A and C, Biochem. Pharmacol., 30:1121–1126.PubMedCrossRefGoogle Scholar
  14. Houser, M. T., and Berndt, W. O., 1988, Unilateral nephrectomy in the rat: Effect on mercury handling and renal cortical subcellular distribution, Toxicol. Appl. Pharmacol., 93:187–194.PubMedCrossRefGoogle Scholar
  15. Inoue, Y., Saijoh, K., and Sumino, K., 1988, Action of mercurials on activity of partially purified soluble protein kinasec from mice brain, Pharmacol. Toxicol., 62:278–281.PubMedCrossRefGoogle Scholar
  16. Johnson, R. M., and Garrison, J. C., 1987, Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5-and inositol 1,3,4-triphosphate in hepatocytes, J. Biol Chem., 262:17285–17293.PubMedGoogle Scholar
  17. Jung, K. Y, Uchida, S., and Endou, H., 1989, Nephrotoxicity Assessment by Measuring Cellular ATP Content. Toxicol. Appl. Pharmacol., 100:369–382.PubMedCrossRefGoogle Scholar
  18. Jung, K. Y., and Endou, H., 1989a, Nephrotoxicity Assessment by Measuring Cellular ATP Content, Toxicol. Appl. Pharmacol., 100:383–390.PubMedCrossRefGoogle Scholar
  19. Jung, K. Y., and Endou, H., 1989b, Biphasic increasing effect of angiotensin-II on intracellular free calcium in isolated rat early proximal tubule, Biochem. Biophys. Research Communications, 165(3):1221–1228.CrossRefGoogle Scholar
  20. Kikkawa, U., Go, M., Koumoto, J., and Nishizuka, Y., 1986, Rapid purification of protein kinase C by high performance liquid chromatography, Biochem. Biophys. Res. Commun., 135:636–643.PubMedCrossRefGoogle Scholar
  21. Klein, K. L., Wang, M. S., Torikai, S., Davidson, W. D., and Kurokawa, A., 1981, Substrate oxidation by isolated single nephron segments of the rat, Kidney Int., 20:29–35.PubMedCrossRefGoogle Scholar
  22. Kojima, I., Kojima, K., and Rasmussen, H., 1985, Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from acrenal glomerulosa, J. Biol. Chem. 260:9177–9184.PubMedGoogle Scholar
  23. Manillier, C., Vinay, P., Lalonde, L., and Gougoux, A., 1986, ATP turnover and renal response of dog tubules to pH changes in vitro, Amer. J. Physiol., 251:F919–F932.PubMedGoogle Scholar
  24. Moraes, V. L. G., and Meis, L., 1987, ATP synthesis by the (Na++K+)-ATPase in the absence of an ionic gradient, FEBS Lett., 222:163–166.PubMedCrossRefGoogle Scholar
  25. Parker, P. J., Coussens, L., Totty, N., Rhee, L., Chen, Y. E., Stabel, S., Waterfield, M. D., and Ullrich, A., 1986, The complete primary structure of protein kinase C-the major phorbol ester receptor, Science, 233:853–859.PubMedCrossRefGoogle Scholar
  26. Pratz, J., Ripoche, P., and Corman, B., 1986, Evideme for proteic water pathways in the luminal membrane of kidney proximal tubule, Biochim. Biophys. Acta., 856:259–266.PubMedCrossRefGoogle Scholar
  27. Rabenstein, D. L., 1978, The chemistry of methylmercury toxicology, J. Chem.Educ., 55:292–296.CrossRefGoogle Scholar
  28. Rasmussen, H., 1986a, Mechanisms of disease: The calcium Messenger System, New Eng. J. Med., 314:1164–1170.PubMedCrossRefGoogle Scholar
  29. Ruegg, C. E., Gandolfi, A. J., Nagle, R. B., and Bredel, Kl, 1987, Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium, dichromate, or hypoxic condition, Toxicol. Appl. Pharmacol. 90:261–273.PubMedCrossRefGoogle Scholar
  30. Schlondorff, D., DeCandido, S., and Satriano, J. A., 1987, Angiotensin II stimulates phospholipaye C and A2 in cultured rat mesangial cells, Am. J. Phisiol., 253:C113–C120.Google Scholar
  31. Schuster, V. L., Kokko, J. P. and Jacobson, R. H., 1984, Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules, J. Clin. Invest, 73:507–515.PubMedCrossRefGoogle Scholar
  32. Silva, P., 1987, Renal fuel utilization, energy requirements and function, Kidney Int., 32.-S9–S14.Google Scholar
  33. Smith, L. B., Smith, L., Brown, E. R., Barnes, D., Sabir, M. A., Davis, J. S., and Farese, R. V., 1984, Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells, Proc. Natl. Acad. Sci. USA, 81:7812–7816.PubMedCrossRefGoogle Scholar
  34. Smith, M. W., Ambudkar, I. S., Phelps, P. C., Regec, A. L., and Trump, B. F., 1987, HgCl2-induced changes in cytosolic Ca2+ cultured rabbit renal tubular cells, Biochim. Biophys. Acta., 931:130–142.PubMedCrossRefGoogle Scholar
  35. Trimm, J. L., Salarna, G., and Abramson, J. J., 1986, Salfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesides, J. Biol. Chem., 261:16092–16098.PubMedGoogle Scholar
  36. Uchida, S., and Endou, H., 1988, Substrate specificity to maintain cellular ATP along the mouse nephron, Amer. J. Physiol., 255:F977–F983.PubMedGoogle Scholar
  37. Weindemann, M. J., and Krebs, H. A., 1969, The fuel of respiration of rat kidney cortex, Biochem. J., 112:149–166.Google Scholar
  38. Weinberg, J. M. and Humes, H. D., 1986, Increase of cell ATP produced by exogenous adenosine nucleotides in isolated rabbit kidney tubules, Amer. J. Physiol., 250:F720–F733.PubMedGoogle Scholar
  39. Wirthensohn, G., and Guder, W. G., 1986, Renal substrate metabolism, Physiol.Rev., 66(2):469–497.PubMedGoogle Scholar
  40. Woodcock, E. A., and Johnston, C. I., 1982, Inhibition of adenylate cyclase by angiotensin II in rat renale cortex, Endocrinol., 111:1687–1691.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hitoshi Endou
    • 1
  • Kyu Yong Jung
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations