Advertisement

Antibodies to Lactoferrin

A Possible Link between Cow’s Milk Intolerance and Autoimmune Disease
  • J. H. Brock
  • A. Lamont
  • D. J. Boyle
  • E. R. Holme
  • C. McSharry
  • J. E. G. Bunn
  • B. Lönnerdal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 443)

Abstract

Individuals with various forms of autoimmunity often develop autoantibodies to neutrophil components collectively known as ANCA (anti-neutrophil cytoplasmic antibodies). Two forms can be distinguished according to the pattern of localisation of these autoantibodies. In one form (c-ANCA) staining is predominantly cytoplasmic1, whereas in the other (p-ANCA) staining is perinuclear2. In the latter IgG antibodies predominate and one of the neutrophil antigens involved is lactoferrin3. Why lactoferrin should act as an autoantigen is not clear.

Keywords

Crescentic Glomerulonephritis Human Lactoferrin Bovine Lactoferrin Neutrophil Antigen Necrotizing Crescentic Glomerulonephritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van der Woude FJ, Rasmussen N, Lobatto S, Permin H, Van der Giessen M, Rasmussen N, Wok A, Daha MR, Van Es LA, Van der Hem GH, The TH. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker for disease activity in Wegener’s granulomatosis. Lancet 1985; i: 425–9.Google Scholar
  2. 2.
    Falk RJ, Jennette JC. Anti-neutrophil cytoplasm antibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing crescentic glomerulonephritis. N Engl J Med 1988; 318: 1651–1657.PubMedCrossRefGoogle Scholar
  3. 3.
    Peen E, Almer S, Bodemar G, Rydén B-O, Sjölin C, Tejle K, Skogh T (1993) Anti-lactoferrin antibodies and other types of ‘ANCA’ in Crohn’s disease, ulcerative colitis, and primary sclerosing cholangitis. Gut 1993; 34: 56–62.CrossRefGoogle Scholar
  4. 4.
    Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, Montreuil J, Spik G (1991) Eur Biochem, 196, 177.CrossRefGoogle Scholar
  5. 5.
    Taylor CJ, Hendrickse RG, McGaw J, Macfarlane SBJ (1988) Detection of cow’s milk protein intolerance by an enzyme-linked immunosorbent assay. Acta Paediatr Scand, 77, 49–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Lönnerdal B, Bernell 0 (1994) Iron, zinc, copper and selenium status of breast-fed infants and infants fed trace element fortified milk based infant formula Acta Paediatr, 83, 367–373.Google Scholar
  7. 7.
    Bates GW, Schlabach MR (1973) The reaction of ferric salts with transferrin. J Biol Chem, 248, 3228–3232.PubMedGoogle Scholar
  8. 8.
    Evans PJ, Halliwell B (1994) Measurement of iron and copper in biological systems: bleomycin and copper-phenanthroline assays. Meth Enzymol, 233, 82–92PubMedCrossRefGoogle Scholar
  9. 9.
    Peen E, Sundqvist T, Skogh T (1996) Leucocyte activation by anti-lactoferrin antibodies bound to vascular endothelium. Clin Exp Immunol, 103, 403–407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. H. Brock
    • 1
  • A. Lamont
    • 1
  • D. J. Boyle
    • 1
  • E. R. Holme
    • 1
  • C. McSharry
    • 1
  • J. E. G. Bunn
    • 2
  • B. Lönnerdal
    • 3
  1. 1.Department of ImmunologyWestern InfirmaryGlasgowUK
  2. 2.Department of Child HealthUniversity of NewcastleNewcastle upon TyneUK
  3. 3.Department of NutritionUniversity of California, DavisDavisUSA

Personalised recommendations