Advertisement

Host Defensive Effects of Orally Administered Bovine Lactoferrin

  • Mamoru Tomita
  • Koji Yamauchi
  • Susumu Teraguchi
  • Hirotoshi Hayasawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 443)

Abstract

Lactoferrin, an iron-binding glycoprotein of the transferrin family, is present in milk, saliva, mucous secretions and many other body fluids1. Lactoferrin is a major component of the secondary granules in neutrophils and this protein is released from activated neutrophils in the inflammatory response2. Many biological functions have been attributed to this protein, including roles in bacteriostasis in milk and at mucosal surfaces, immunomodulation, regulation of cell proliferation and intestinal iron transport3. Since the majority of the proposed functions of lactoferrin are based on the results of in vitro experiments, it seems clear that more in vivo studies are required for better understanding of the biological role of this protein. Considering the high similarities among the physicochemical properties of lactoferrins from several species with respect to molecular weight, primary structures4,5, three-dimensional structures6,7, and isoelectric point8, it seems possible that administered lactoferrin isolated from bovine milk may exert physiological activities in other animals and humans. In this paper, we outline research results demonstrating host defensive effects of orally administered bovine lactoferrin observed in several in vivo studies performed by our research group and some of our collaborators.

Keywords

Phagocytic Activity Bacterial Translocation Feline Immunodeficiency Virus Bovine Milk Blood Neutrophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masson PL. Heremans.1F, Dive CH. (1966) An iron-binding protein common to many external secretions. Clin. Chico. Acts 14: 735–739.Google Scholar
  2. 2.
    Lash JA, Coates TD, Lafuze J, Baehner RL, Boxer LA. (1983) Plasma lactoferrin reflects granulocyte seilvation in vivo. Blood 61: 885–888.PubMedGoogle Scholar
  3. 3.
    Lonnerdal B, lycr S. (1995) Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15: 93–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Metz-ttoutigue M-H, Jollès J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jollès P. (1984) Human lactotransfcrrin: amino acid sequence and structural comparisons with other transferrins. Eur. J. Biochem. 145: 659–676.Google Scholar
  5. 5.
    Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, Montreuil J, Spik G. (1991) Molecular cloning and sequence analysis of bovine lactotransferrin. Eur. J. Biochem. 196: 177–184.Google Scholar
  6. 6.
    Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN. (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J. Mol. Biol. 209: 711–734.Google Scholar
  7. 7.
    Norris GE, Anderson BF, Baker EN, Baker HM, Gärtner AL, Ward J, and Rumball SV. (1986) Preliminary crystallographic studies on bovine lactoferrin. J. Mol. Biol. 191: 143–145.Google Scholar
  8. 8.
    Shimazaki K, Kawaguchi A, Sato T, Ueda Y, Tomimura T, Shimamura S. (1993) Analysis of human and bovine milk lactoferrins by Rotofor and chromatofocusing. Int. J. Biochem. 25: 1653–1658.Google Scholar
  9. 9.
    Arnold RR, Brewer M, Gauthier JJ. (1980) Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect. Immun. 28: 893–898.Google Scholar
  10. 10.
    Weinberg ED. (1978) Iron and infection. Microbiol. Rev. 42: 45–66.PubMedGoogle Scholar
  11. 11.
    H. Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ. (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect. Immun. 35: 792–799.Google Scholar
  12. 12.
    Ellison Ill RT, Giehl TJ, LaForce FM. (1988) Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56: 2774–2781.Google Scholar
  13. 13.
    Erdei J, Forsgren A, Naidu AS. (1994) Lactoferrin binds to porins OmpF and OmpC in Escherichia coli. Infect. Immun. 62: 1236–1240.Google Scholar
  14. 14.
    Tornita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74: 4137–4142.CrossRefGoogle Scholar
  15. 15.
    Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tornita M. (1992) Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1121: 130–136.Google Scholar
  16. 16.
    Teraguchi S, Shin K, Fukuwatari Y, Shimamura S. (1996) Glycans of bovine lactoferrin function as receptors for the type 1 fimbrial lectin of Escherichia coli. Infect. Immun. 64: 1075–1077.Google Scholar
  17. 17.
    lzhar M, Nuchamowitz Y, Mirelman D. (1982) Adherence of Shigella flecneri to guinea pig intestinal cells is mediated by a mucosal adhesin. Infect. Immun. 35: 1110–1118.Google Scholar
  18. 18.
    Spik G, Brunet B, Mazurier-Dehaine C, Fontaine G, Montreuil J. (1982) Characterization and properties of the human and bovine lactotransferrins extracted from the faeces of newborn infants. Acta Pediatr. Scand. 71: 979–985.Google Scholar
  19. 19.
    Nuda Y, Takayanagi N, Terashima H, Horino K. (1988) Lactoferrin in human breast milk and feces of newborn measured by ELISA. J. Jpn. Pediatr. Soc. 92: 1496–1501. (in Japanese)Google Scholar
  20. 20.
    Hentges DJ, Marsh WW, Petschow BW, Thal WR, Carter MK. (1992) Influence of infant diets on the ecology of the intestinal tract of human flora-associated mice. J. Pediatr. Gastroent. Nutr. 14: 146–152.Google Scholar
  21. 21.
    Roberts AK, Chierici R, Sawatzki G, Hill MJ, Volpato S, Vigi V. (1992) Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Pediatr. 81: 119–124.Google Scholar
  22. 22.
    Balmer SE, Scott PH, Wharton BA. (1989) Diet and faecal flora in the newborn: Lactoferrin. Arch. Dis. Child. 64: 1685–1690.Google Scholar
  23. 23.
    Spik G, Legrand D, Leveugle B, Mazurier J, Mikogami,T, Montreuil J, Pierce A. Rochard E. (1993) Binding properties of different lactotransferrins to human lactotransferrin receptor, p. 77–83. In B. Renner and G. Sawatzki (ed.), New Perspectives in Infant Nutrition; symposium Antwerp 1992. Thieme Medical Publishers, New York.Google Scholar
  24. 24.
    Hutchens TW, Henry JF, Yip T-T. (1991) Structurally intact (78-kDa) forms of maternal lactoferrin purified from urine of preterm infants fed human milk: Identification of a trypsin-like proteolytic cleavage event in vivo that does not result in fragment dissociation. Proc. Natl. Acad. Sci. USA 88: 2994–2998.Google Scholar
  25. 25.
    Johanson B. (1960) Isolation of an iron-containing red protein from human milk. Acta Chem. Scand. 14: 510–512.CrossRefGoogle Scholar
  26. 26.
    Groves ML. (1960) The isolation ofa red protein from milk. J. Am. Chem. Soc. 82: 3345–3350.CrossRefGoogle Scholar
  27. 27.
    Teraguchi S, Ozawa K, Yasuda S, Shin K, Fukuwatari Y, Shimamura S. (1994) The bacteriostatic effects of orally administered bovine lactoferrin on intestinal Enterobacicriaccae of SPF mice fed bovine milk. Biosci. Biotech. Biochem. 58: 482–487.Google Scholar
  28. 28.
    Teraguchi S, Shin K, Ozawa K, Nakamura S, Fukuwatari Y, Tsuyuki S, Namihira H, Shimamura S. (1995) Bacteriostatic effect of orally administered bovine lactoferrin on proliferation of Clostridium species in the gut of mice fed bovine milk. Appl. Environ. Microbiol. 61: 501–506.Google Scholar
  29. 29.
    Teraguchi S, Ogata T, Shin K, Kingaku M, Fukuwatari Y, Kawase K, Hayasawa H, Tornita M. (1997) The mechanism of in vivo bacteriostasis of bovine lactoferrin. (this refers to the article in the same lactoferr in monograph).Google Scholar
  30. 30.
    Berg RD. (1992) Translocation and the indigenous gut flora. p. 55–85. In R. Fuller (ed.), Probiotics: The Scientific Basis, Chapman Hall, Cambridge.Google Scholar
  31. 31.
    Teraguchi S, Shin K, Ogata T, Kingaku M, Kaino A, Miyauchi H, Y. Fukuwatari Y, Shimamura S. (1995) Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Appl. Environ. Microbiol. 61, 4131–4134. 4134.Google Scholar
  32. 32.
    Kawaguchi S, Hayashi T. Masano H, Okuyama K, Suzuki T, Kawase K. (1989) Shusankiigaku 19, 125–130. (in Japanese)Google Scholar
  33. 33.
    Zagulski T, Lipinski P, Zagulska A, Broniek S, Jarzabek Z. (1989) Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br. J. Exp. Path. 70: 697–704.Google Scholar
  34. 34.
    Machnicki M, Zimecki M. Zagulski T. (1993) Lactoferrin regulates the release of tumor necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Path. 74: 433–439.Google Scholar
  35. 35.
    Lu L, Hangoc G, Oliff A, Chen LT, Shen R-N, Broxmeyer HE. (1987) Protective influence of lactoferrin on mice infected with the polycythemia-inducing strain of Friend virus complex. Cancer Res. 47: 4184 4188.Google Scholar
  36. 36.
    Bezault J, Bhimani R, Wiprovnick J, Furmanski P. (1994) Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice. Cancer Res. 54: 2310–2312.PubMedGoogle Scholar
  37. 37.
    Yoo Y-C, Watanabe S, Watanabe R, Hata K, Shimazaki K, Azuma 1. (1997) Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn. J. Cancer Res. 88: 184–190.Google Scholar
  38. 38.
    Sato R, Inanami O, Tanaka Y, Takase M, Naito Y. (1996) Oral administration of bovine lactoferrin for treatment of intractable stomatitis in feline immunodeficiency virus (FIV)-positive and FIV-negative cats. Am. J. Vet. Res. 57: 1443–1446.Google Scholar
  39. 39.
    Kakuta I. (1996) Protective effect of orally administrated bovine lactoferrin against experimental infection of goldfish Carassius aurahrs with Ichthyophthirius multifiliis. Suisanzoshoku 44: 427–432. (in Japanese)Google Scholar
  40. 40.
    Kakuta I, Kurokura H. (1995) Defensive effect of orally administered bovine lactoferrin against Crvptocarvon irritans infection of red sea bream. Fish Pathol. 30: 289–290. (in Japanese)CrossRefGoogle Scholar
  41. 41.
    Kakuta I, Kurokura H, Nakamura H, Yamauchi K. (1996) Enhancement of the nonspecific defense activity of the skin mucus of red sea bream by oral administration of bovine lactoferrin. Suisanzoshoku 44: 197–202. (in Japanese)Google Scholar
  42. 42.
    Sawatzki G, Rich IN. (1989) Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells 15: 371–385.PubMedGoogle Scholar
  43. 43.
    Boxer LA, Coates TD, Haak RA, Wolach JB, Hoffstein S, Baehner RL. (1982) Lactoferrin deficiency associated with altered granulocyte function. New Engl. J. Med. 307: 404–409.Google Scholar
  44. 44.
    Gahr M, Speer CP, Damerau B, Sawatzki G. (1991) Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leuk. Biol. 49: 427–433.Google Scholar
  45. 45.
    Lima MF, Kierszenbaum F. (1985) Lactoferrin effects on phagocytic cell function. 1. Increased uptake and killing of an intracellular parasite by murine macrophages and monocytes. J. Immunol. 134: 4176–4183.Google Scholar
  46. 46.
    Shinoda I, Takase M, Fukuwatari Y, Shimamura S, Köller M, König W. (1996) Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci. Biotech. Biochem. 60: 521–523.Google Scholar
  47. 47.
    Nishiya K, Horwitz DA. (1982) Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody-dependent cell-mediated cytotoxicity. J. Immunol. 129: 2519–2523.PubMedGoogle Scholar
  48. 48.
    Zimecki M, Mazurier J, Machnicki M, Wieczorek Z, Montreuil J. Spik G. (1991) Immunostimulatory activity of lactotransferrin and maturation of CD4- CD8- murine thymocytes. Immunol. Lett. 30: 119–124.Google Scholar
  49. 49.
    Broxmeyer HE, Platzer E. (1984) Lactoferrin acts on I-A and I-E/C antigen’ subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro. J. Immunol. 133: 306–314.PubMedGoogle Scholar
  50. 50.
    Crouch SPM, Slater KJ, Fletcher J. (1992) Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235–240.PubMedGoogle Scholar
  51. 51.
    Kijlstra A, Jeurissen SHM. (1982) Modulation of classical C3 convertase of complement by tear lactoferrin. Immunology 47: 263–270.PubMedGoogle Scholar
  52. 52.
    Unpublished dataGoogle Scholar
  53. 53.
    Okutomi T, Abe S, Tansho S, Wakabayashi H, Kawase K, Yamaguchi H. (1997) Augmented inhibition of growth of Candida albicans by neutrophils in the presence of lactoferrin. FEMS Immunol. Med. Microbial. (in press)Google Scholar
  54. 54.
    Yamauchi K, Wakabayashi H, Hashimoto S, Teraguchi S, Hayasawa H, Tornita M. (1997) Effects of orally administered bovine lactoferrin on the immune system of healthy volunteers. (this refers to the article in the same lactoferr in monograph)Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mamoru Tomita
    • 1
  • Koji Yamauchi
    • 1
  • Susumu Teraguchi
    • 1
  • Hirotoshi Hayasawa
    • 1
  1. 1.Nutritional Science LaboratoryMorinaga Milk Industry Co., Ltd.Zama-City, Kanagawa 228Japan

Personalised recommendations