The Gut

A Key Metabolic Organ Protected by Lactoferrin during Experimental Systemic Inflammation in Mice
  • Marian L. Kruzel
  • Yael Harari
  • Chung-Ying Chen
  • Gilbert A. Castro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 443)


The gastrointestinal tract may be viewed as an ecologic system in which a balance between the host and bacterial flora exists. Two major host components appear to be involved in maintaining this balance. The first is a non-specific structural barrier provided by the epithelial layer of the gastrointestinal mucosae. The second component involves functional immunological elements found in the mucosal and submucosal compartments, e.g., gut associated lymphoid tissue. When gut integrity is disrupted by invasive pathogens or by trauma, a myriad of pro-inflammatory mediators are released from cells in the gut wall that exert actions in the tissue or gut lumen1. One of these mediators is lactoferrin, an iron binding protein found in high concentration in most human exocrine secretions. Despite controversies on its physiological role, evidence is emerging that lactoferrin plays an important role in host defense against toxic metabolites and antigenic components of potential pathogens2–4. This manuscript is intended to provide an overview of work related to lactoferrin’s modulatory roles in inflammation, and to present observations from experimental studies on the preservation of intestinal structure and function by lactoferrin during intestinal inflammation. The possibility that lactoferrin limits the autodestructive inflammatory responses presents a new alternative for the future management of systemic inflammation.


Systemic Inflammation Human Milk Multiple Organ Failure Bacterial Translocation Human Lactoferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deitch E.A. 1992 Multiple organ failure: Pathophysiology and potential future therapy. Ann. Surg. 216, 117–134.PubMedCrossRefGoogle Scholar
  2. 2.
    Spik G., Montreuil J., 1983 The role of lactotransferrin in the molecular mechanisms of antibacterial defense. Bull. Eur. Physiopathol. Resp. 19 (2), 123–130.Google Scholar
  3. 3.
    Brock J. 1995 Lactoferrin: a multifunctional immunoregulatory protein? Immunology Today 16, 417–419.PubMedCrossRefGoogle Scholar
  4. Bayens R.D., Bezwoda W.R. 1994 Lactoferrin and the inflammatory response. In: Lactoferrin: Structure and Function, eds. T.W.Hutchens et al.,Plenum Press, pp.133–141.Google Scholar
  5. 5.
    Lonnerdal B., lyer S. 1995 Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15, 93–110.PubMedCrossRefGoogle Scholar
  6. 6.
    Sanches L., Calvo M., Brock J.H. 1992 Biological role of lactoferrin. Arch. Dis. Child. 67, 657–661.Google Scholar
  7. 7.
    Teng C.T., Liu Y., Yang N., Walmer D., Panella T. 1992 Differential Molecular Mechanism of the Estrogen Action That Regulates Lactoferrin Gene in Human and Mouse. Mol. Endo. 6, 1969–1981.Google Scholar
  8. 8.
    Broxmeyer H.E., Smithyman A., Eger R.R., Meyers P.A., de Sousa M. 1978 Identification of lactoferrin as the granulocyte-derived inhibitor of colony stimulating activity (CSA)-production. J. Exp. Med. 148, 1052–1067.Google Scholar
  9. 9.
    Broxmeyer H.E., de Sousa M., Smithyman A., Ralph P., Hamilton J., Kurland J.L, Bognacki J. 1980 Specificity and modulation of the action of lactoferrin, a negative regulator of myelopoiesis. Blood 55 (2), 324–333.PubMedGoogle Scholar
  10. 10.
    Crouch S.P.M., Slater K.J., Fletcher J. 1992 Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80, 235–240.Google Scholar
  11. 11.
    Broxmeyer H.E., Williams D.E., Hangoc G., Cooper S., Gentile P., Shen R-N., Ralph P., Gillis S., Bicknell. 1987 The oposing action in vivo on murine myelopoieis of purified preparations of lactoferrin and the colony stimulating factor. Blood Cells 13 (1–2), 31–48.Google Scholar
  12. 12.
    McCormick J.A., Markey G.M., Morris T.M.C. 1991 Lactoferrin-inducible monocyte cytotoxicity for K562 cells and decay of natural killer lymphocyte cytotoxicity. Clin. Exp. Immunol. 83, 154–156.Google Scholar
  13. 13.
    Nishiya K., Horwitz D.A. 1982 Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody-dependent cell-mediated cytotoxicity. J. Immunol. 129, 219–2523.Google Scholar
  14. 14.
    Duncan R.L., McArthur W.P. 1981 Lactoferrin-mediated modulation of mononuclear cell activities. Suppression of the murine in vitro primary antibody response. Cell Immunol. 63, 308–320.PubMedCrossRefGoogle Scholar
  15. 15.
    Zimecki M., Adamik B., Wlaszczyk A., Kubler A., Zagulski T. 1997 Immunoregulatory activity of lactoferrin in healthy individuals and in patients: Clinical studies in vitro.Third International Conference on Lactoferrin, Le Touquet, France.Google Scholar
  16. 16.
    Howie P.W., Forsyth J.S., Ogston S.A., Clark A., du V.Florey C. 1990 Protective effect of breast feeding against infection. B. M. J. 300, I 1–16.Google Scholar
  17. 17.
    Brock J.H. 1980 Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infants. Arch. Dis. Child. 55, 417–421.PubMedCrossRefGoogle Scholar
  18. 18.
    Roberts A.K. 1986 Prospects for further approximation of infant formulas to human milk. Human Nut•ition:Applied Nutrition 40A, Suppl. L 27–37.Google Scholar
  19. 19.
    Roberts A.K., Chierici R., Sawatzki G., Hill M.J., Volpato S. Vigi V. 1992 Supplementation of an adapted formula with bovine lactoferrin. I. Effect on the infant feacal flora. Acta Paediatr. Scand. 81, 119–124.Google Scholar
  20. 20.
    Balmer S.E., Scott P.H., Wharton B.A. 1989 Diet and fecal flora in the newborn: lactoferrin. Arch. Dis. Child. 64, 1685–1690.Google Scholar
  21. 21.
    Bellamy W., Takase M., Wakabayashi H., Kawase K., Tomita M. 1992 Antimicrobial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73, 472–479.Google Scholar
  22. 22.
    Wakabayashi f, Bellamy W., Takase M., Tornita M. 1992 Inactivation of Listeria monocytogenes by lactoferricin, a potent antimicrobial peptide derived from cow’s milk. J. Food Protect. 55, 238–240.Google Scholar
  23. 23.
    Zagulski T., Lipinski P., Zagulska A., Broniek S., Jarzabek Z. 1989 Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br. J. Exp. Pathol. 70, 697–704.Google Scholar
  24. 24.
    Baynes R.D., Bezwoda W.R., Khan Q., Mansoor N. 1986 Relationship of plasma lactoferrin content to neutrophil regeneration and bone marrow infusion. Scand. J. Haematol. 36, 79–84.Google Scholar
  25. 25.
    Goris R. J.A., Boekhorst T.P.A., Nuytinck J.K.S., Gimbrere J.S.F. 1985 Multiple organ failure. Arch. Surg. 120, 1109–1115.Google Scholar
  26. 26.
    Deith E.A., Xu D., Qi L., Berg R.D. 1991 Bacterial translocation from the gut impairs systemic immunity. Surgery 109, 269–276.Google Scholar
  27. 27.
    Kruzel M.L., Harari Y., Chen C.Y., Castro G.A. 1997 Preservation of Mucosal Structure and Function by Lactoferrin during Tiichinellar vim/is-Induced Enteritis in Mice. Manuscript submitted to the Int. J. Exp. Pathol.Google Scholar
  28. 28.
    Wang D.. Pabst K.M., Aida Y., Pabst M.J. 1995 Lipopolysaccharide-inactivating activity of neutrophils is due to lactoferrin. J. Leukoc. Biol. 57, 865–874.Google Scholar
  29. 29.
    Cohen M.S., Mao J., Rasmussen G.T., Serody J.S., Britigan B.E. 1992 Interaction of Lactoferrin and Lipopolysaccharide ( LPS ): Effects on the Antioxidant Property of Lactoferrin and the Ability of LPS to Prime Human Neutrophils for Enhanced Superoxide Formation. J.Infect. Dis. 166, 1375–1378.Google Scholar
  30. 30.
    Miyazawa K., Mantel C., Lu L., Morrison D.C., Broxmeyer H.E. 1991 Lactoferrin-lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J. Immunol. 145, 723–729.Google Scholar
  31. 31.
    Elass-Rochard E., Roseanu A., Legrand D.. Trif M., Salmon V., Motas C., Montreuil J., Spik G. 1995 Lactoferrin-lipopolysaccharide interaction: involvment of the 28–34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem. J. 312, 839–845.Google Scholar
  32. 32.
    Marshall J.C., Christou N.V., Horn R., Meakins J.L. 1988 The microbiology of multiple organ failure. Arch. Surg. 123, 309–315.Google Scholar
  33. 33.
    Mainous M.R., Ertel W., Chaudry I.H., Deith E.A. 1995 The gut: a cytokine-generating organ in systemic inflammation? Shock 4 (3), 193–199.PubMedCrossRefGoogle Scholar
  34. 34.
    Botha A.J., Moore F.A., Moore E.E., Sauaia A., Banerjee A., Peterson V.M. 1995 Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J. Trauma 39, 411–417.PubMedCrossRefGoogle Scholar
  35. 35.
    Machnicki M., Zimecki M., Zagulski T. 1993 Lactoferrin regulates the release of tumor necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 74, 433–439.Google Scholar
  36. 36.
    Bagby G.C., McCall E., Layman D.L. 1983 Regulation of colony-stimulating activity production: Interactions of fibroblasts, mononuclear phagocytes, and lactoferrin. J. Clin. Invest. 71, 340–344.Google Scholar
  37. 37.
    Teraguchi S., Shin K., Ogata T., Kingaku M., Kaino A., Miyauchi H., Fukawatari Y., Shimamura S. 1995 Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine lactoferrin. Appl. Environ. Microbiol. 61 (11), 4131–4134.PubMedGoogle Scholar
  38. 38.
    Teraguchi S., Shin K., Ozawa K., Nakamura S., Fukuwatari Y., Tsuyuki S., Namihira H., Shimamura S. 1995 Bacteriostatic Effect of Orally Administered Bovine Lactoferrin on Proliferation of Clostridium Species in the Gut of Mice fed Bovine Lactoferrin. Appl. Environ. Microbiol. 61 (4), 501–506.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marian L. Kruzel
    • 1
  • Yael Harari
    • 1
  • Chung-Ying Chen
    • 1
  • Gilbert A. Castro
    • 1
  1. 1.Department of Integrative Biology, Pharmacology and PhysiologyUniversity of Texas Medical SchoolHoustonUSA

Personalised recommendations