Skip to main content

Identification and Analysis of a Ca2+-Dependent Lactoferrin Receptor in Rat Liver

Lactoferrin Binds to the Asialoglycoprotein Receptor in a Galactose-Independent Manner

  • Chapter
Book cover Advances in Lactoferrin Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 443))

Summary

We identified a 45 kDa Ca2+-dependent Lf binding protein on rat hepatocytes. Dithiobis(sulfosuccimidylproprionate) (DTSSP)-crosslinked 125I-Lf to a 45 kDa adduct in a Ca2+-dependent manner on intact cells. The 125I-labeledcrosslinked complexes were absent when either surface-bound 125I-Lf was stripped prior to crosslinking or an excess of unlabeled Lf was included in the DTSSP reaction. Triton X-100 extracts of hepatocyte membrane ghosts were chromatographed on Lf-agarose, and a 45 kDa polypeptide (p45) was eluted by EGTA. Anti-p45 sera blocked vigorously 125I-Lf endocytosis to intact rat hepatocytes, confirming that p45 functions as the Ca2+-dependent Lf receptor on hepatocytes. Two tryptic fragments of p45 showed 100% identity with internal sequences (Leu121 →Lys 126 and Phe198-Lys220) of the major subunit (RHL- l) of the rat asialoglycoprotein receptor. Antisera against p45 and RHL-1 crossreacted equally well with each protein, and asialoorosomucoid blocked the binding of 125I-Lf to hepatocytes. We did not detect the minor subunits (RHL2/3) of the rat asialoglycoprotein receptor in p45 preparations from Triton X-100-extracts of hepatocytes, and 125I-Lf bound to immobilized RHL-1 but not to RHL-2/3. Exoglycosidases were used to remove terminally-exposed NeuNAc and α-and β-Gal from bovine Lf glycans, and lectin blotting confirmed that glycosidase-treated Lfs lacked detectable terminal Gal. Unexpectedly, deglycosylated Lf exhibited no loss in its ability to compete with unmodified Lf for binding to isolated hepatocytes. Moreover, β-lactose but not sucrose competed vigorously for 125I-Lf endocytosis by hepatocytes, indicating that Lf binds at or near the carbohydrate-recognition domain of RHL-l. We conclude that RHL-1 is the Ca2+-dependent Lf receptor on hepatocytes and that it binds Lf in a Gal-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huettinger, M, Retzek H, Hermann M, Goldenberg H. (1992) J. Biol. Chem. 267: 18551–18557.

    Google Scholar 

  2. Mellinger, M, Hamner M, Szakmary KA, Steinbock F, Scheiber B, Goldenberg H, Huettinger M. (1995) FEBS Lett. 360: 70–74.

    Article  Google Scholar 

  3. Hu, WL, Regoeczi E, Chindemi PA, Bolyos M. (1993) Am. J. Physiol. 264: G112 - G117.

    PubMed  CAS  Google Scholar 

  4. McAbee, DD, Nowatzke W, Oehler C, Sitaram M, Sbaschnig E, Opferman JT, Carr J, Esbensen K. (1993) Biochemistry 32: 13749–13760.

    Article  PubMed  CAS  Google Scholar 

  5. Ziere, GJ, Vandijk MCM, Bijsterbosch MK. Vanberkel TJC. (1992) J. Biol. Chem. 267: 11229–11235.

    Google Scholar 

  6. McAbee, DD, Esbensen K. (1991) J. Biol. Chem. 266: 23624–23631.

    Google Scholar 

  7. Schachter, H, Jabbal I, Hudgin RL, Pinteric L, McGuire EJ, Roseman S. (1970) J. Biol. Chem. 245: 1090–1100.

    Google Scholar 

  8. Ray, DA, Weigel PH. (1985) Anal. Biochem. 145: 37–46.

    Article  PubMed  CAS  Google Scholar 

  9. Burnette, WN. (1981) Anal. Biochem. 112: 195–203.

    Article  PubMed  CAS  Google Scholar 

  10. Zeng, FY, Oka JA. Weigel PH. (1996) Glycobiology 6:247–255.

    Google Scholar 

  11. Leung, JO, Holland EC, Drickamer K. (1985) J. Biol. Chem. 260: 12523–12527.

    Google Scholar 

  12. Drickamer, K, Mamon JF, Bins G, Leung JO. (1984) J. Biol. Chem. 259: 770–778.

    Google Scholar 

  13. Ashwell, G, Harford J. (1982) Annu. Rev. Biochem. 51: 531–554.

    Google Scholar 

  14. Imber, MJ, Pizzo SV. (1983) Biochem. J. 212: 249–257.

    PubMed  CAS  Google Scholar 

  15. Coddeville, B, Strecker G, Wieruszeski J-M, Vliegenthart JFG, van Halbeek H, Peter-Katalinic J, Egge H, Spik G. (1992) Carbohydrate Res. 236: 145–164.

    Article  CAS  Google Scholar 

  16. Spik, G, Coddeville B, Montreuil J. (1988) Biochimie 70: 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  17. Lce, YC, Townsend RR, Hardy MR, Lonngren J, Arnarp J, Haraldsson M, Lonn H. (1983) J. Biol. Chem. 258: 199–202.

    Google Scholar 

  18. Sitaram, MP, Maloney B, McAbee DD. (1996) FASEB J. 10: 1263a.

    Google Scholar 

  19. Moguilevsky, N, Retegui LA, Courtoy PJ, Castracane CE, Masson PL. (1984) Lab. Invest. 50: 335–340.

    PubMed  CAS  Google Scholar 

  20. Herzig, MCS, Weigel PH. (1990) Biochemistry 29: 6437–6447.

    Article  PubMed  CAS  Google Scholar 

  21. Sawyer, JT, Sanford JP, Doyle D. (1988) J. Biol. Chem. 263: 10534–10538.

    Google Scholar 

  22. Weigel, PH, Oka JA. (1983) J. Biol. Chem. 258: 5095–5102.

    Google Scholar 

  23. McAbee, DD, Ling YY. (1997) J. Cell. Physiol. 171: 75–86.

    Google Scholar 

  24. Kelm, S, Schauer R. (1988) Biol. Chem. Hoppe-Seyler 369: 693–704.

    Google Scholar 

  25. li, M, Kurata H, Itoh N, Yamashina I, Kawasaki T. (1990) J. Biol. Chem. 265: 11295–11298.

    Google Scholar 

  26. Ozaki, K. Ii M, Itoh N, Kawasaki T. (1992) J. Biol. Chem. 267: 9229–9235.

    Google Scholar 

  27. Britigan, BE, Ratcliffe HR, Buettner GR, Rosen GM. (1996) Biochim. Biophys. Acta 1290: 231–240.

    Google Scholar 

  28. Courtoy, PJ, Moguilevsky N, Retegui LA, Castracane CE, Masson PL. (1984) Lab. Invest. 50: 329–334.

    PubMed  CAS  Google Scholar 

  29. Hoyle, GW, Hill RL. (1991) J. Biol. Chem. 266: 1850–1857.

    Google Scholar 

  30. Kempka, G, Roos PH, Kolb-Bachofen V. (1990) J. Immunol. 144: 1004–1009.

    PubMed  CAS  Google Scholar 

  31. Ishibashi, S, Hammer RE, Herz J. (1994) J. Biol. Chem. 269: 27803–27806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

McAbee, D.D., Bennatt, D.J., Ling, Y.Y. (1998). Identification and Analysis of a Ca2+-Dependent Lactoferrin Receptor in Rat Liver. In: Spik, G., Legrand, D., Mazurier, J., Pierce, A., Perraudin, JP. (eds) Advances in Lactoferrin Research. Advances in Experimental Medicine and Biology, vol 443. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9068-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9068-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9070-2

  • Online ISBN: 978-1-4757-9068-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics