Restricted Spatiotemporal Expression of Lactoferrin during Murine Embryogenesis

  • Pauline P. Ward
  • Marisela M. Mendoza
  • Odila Saucedo-Cardenas
  • Christina T. Teng
  • Orla M. Conneely
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 443)


Lactoferrin is a member of the transferrin family of iron-binding proteins to which several physiological functions have been ascribed. While there is a wealth of evidence about the distribution and function of this protein in the adult, the expression and function, if any, of lactoferrin during embryogenesis has not been investigated. In the current study, the spatiotemporal distribution of lactoferrin was analyzed during normal murine embryonic development. This analysis demonstrated that lactoferrin is expressed in three distinct patterns during embryogenesis. First, lactoferrin is expressed at the 2-cell stage in the preimplantation embryo where it continues to be expressed until the blastocyst stage when expression ceases. The second phase of lactoferrin expression is not detected until the latter half of gestation when the protein is detected in the myeloid cells, beginning in the fetal liver at embryonic day l l and later in the spleen and bone marrow coinciding with the onset and diversification of myelopoiesis in these organs during embryogenesis. Finally, lactoferrin is detected in a variety of glandular epithelial cells and/or their secretions, including respiratory and oral epithelia which is consistent with the expression pattern observed for this protein in the adult where it plays an important role in host defense at the mucosal surface. Taken together, these analyses indicate that the role of lactoferrin in the developing embryo is restricted to the preimplantation stage and development of first and second line host defense systems.


Fetal Liver Blastocyst Stage Preimplantation Embryo Glandular Epithelial Cell Preimplantation Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aisen, P. & Listowsky, I. (1980) Ann. Rev. Biochem. 49, 357–393.Google Scholar
  2. 2.
    Anderson. B. F., Baker, H. M., Norris, G. E., Rice, D.W. &Baker, E.N. (1989) J. Mol. Biol. 209, 71 I - 734.Google Scholar
  3. 3.
    Masson, P. L., Heremans, J. F. &Dive, C. (1966) Clin. Chico. Acta. 14, 735–739.Google Scholar
  4. 4.
    Pentecost, B. T. &Teng, C. T. (1987) J. Biol. Chem. 262, 10134–10139.Google Scholar
  5. 5.
    Masson, P. L. &Heremans, J. F. (1971) Comp. Biochem. Physiol. 39, 119–129.Google Scholar
  6. 6.
    Yu, L.-C., and Chen, Y-H. (1993) Biochem. J. 296, 107–111.PubMedGoogle Scholar
  7. 7.
    Masson, P. L., Heremans, J. F. &Schonne. E. (1969) J. Exper. Med. 130, 643–658.Google Scholar
  8. 8.
    Rado, T. A., Bollekens, J., St. Laurent, G.. Parker, L. &Benz Jr., E. J. (1984) Blood 64, 1103–1109.Google Scholar
  9. 9.
    Gram, J. D. &Reiter, B. (1968) Biochim. Biophys. Acta 170, 351–365.Google Scholar
  10. 10.
    Bullen, J. J., Rogers, H. J. &Griffiths, E. (1978) Current Topics in Microbiology and Immunology 80. 135.CrossRefGoogle Scholar
  11. 11.
    I. Arnold, R. R., Cole, M. F. &McGhee, J. R. (1977) Science 197, 263–265.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellison. R. T. &Giehl, T.-J. (1991). 1. Clin. Investig. 88, 1080–1091.Google Scholar
  13. 13.
    Applemelk, B. J., An, Y., Geerts, M., Thijs, B. G., DeBoer. H. A., MacLaren, D. M.. DeGraaff, J. &Nuijens,.1. H. (1994) Infect. Immunity 62, 2628–2632.Google Scholar
  14. 14.
    Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, C., Motas, C. Montreuil, J., and Spik, G. (1995) Biochem. J. 312. 839–846.PubMedGoogle Scholar
  15. 15.
    Cox, T. M., Mazurier, J., Spik, G., Montreuil, J. and Peters, T. J. (1979) Biochim. Biophys. Acta 558. 129 141.Google Scholar
  16. 16.
    O. lycr. S. &Lonnerdal, B. (1993) Fur. J. Clin. Nutri. 47, 232–241.Google Scholar
  17. 17.
    Nichols, B. L., McKee, K., Henry, J. F., and Putman, M. (1987) Pediat. Res. 21, 563–567.PubMedCrossRefGoogle Scholar
  18. 18.
    Hashizume, S., Kuroda, K. &Murakami, H. (1987) Biochem. Biophys. Res. Commun. 763, 377–382.Google Scholar
  19. 19.
    Zimecki. M.. Mazurier, J., Machnicki, M.. Wieczorek, Z.. Montreuil, J. &Spik, G. (1991) Immunology Leu. 30. 119–124.CrossRefGoogle Scholar
  20. 20.
    Zimecki, M., Mazurier, J., Spik, G., and Kapp, J. A. (1995) Immunology 86, 122–127.Google Scholar
  21. 21.
    Zagulski, T., Lipinski, P., Zagulska, A. Broniek, S. &Jarzabek, Z. (1989) Brit. J. Exper. Pathol. 70. 697–704.Google Scholar
  22. 22.
    Crouch, S.P.M., Slater, K. J.. &Fletcher, J. (1992) Blood 80. 235–240.PubMedGoogle Scholar
  23. 23.
    Machnicki, M., Zimecki. M. &Zagulski, T. (1993) Intern. J. Exper. Pathol. 74, 433–439.Google Scholar
  24. 24.
    Zucali, J. R.. Broxmeycr, H. E., and Ulatowski, J. A. (1979) Blood 54, 951–954.PubMedGoogle Scholar
  25. 25.
    roxmcyer, H. E., Smithyman, A., Eger. R. R., Meyers, P. A. &deSousa, M. (1978) J. Exper. Med. 148, 1052–1067.Google Scholar
  26. 26.
    Sawatzki, G. &Rich. C. (1989) Blood Cells 15, 371–375.PubMedGoogle Scholar
  27. 27.
    Mazurier, J. Legrand, D., Hu. W.-L., Montreuil, J., and Spik, G. (1989) Eur. J. Biochem. 179, 481–487.PubMedCrossRefGoogle Scholar
  28. 28.
    I3irgens, H. S., Karle, H.. Hansen, N. E. &Kristensen, L. O. (1984) Scand. J. Haematol. 33, 275–280.Google Scholar
  29. 29.
    Van Snick, J. L., and Masson, P. L. (1976) J. Exper. Med. 144, 1568–1580.Google Scholar
  30. 30.
    Kaufman, M. H. (1995) The Atlas of Mouse Development, Academic Press.Google Scholar
  31. 31.
    Warburton, D. &Fraser, F. C. (1964) Am. J. Hum. Genet. 16, 1–15.Google Scholar
  32. 32.
    Pentecost, B. T. &Teng, C. T. (1987) J. Biol. Chem. 262, 10134–10139.Google Scholar
  33. 33.
    Johnson, M. H., McConnell, J. &Van Blerkom, J. (1984) J. Embryol. Exp. Morphol 83, 197–231.Google Scholar
  34. 34.
    Rossant, J. (1986) in `Experimental Approaches to Mammalian Embryonic Development’, eds. Rossant, E..1.. &Pedersen, R. A. ( Cambridge University Press: New York ) pp. 97–120.Google Scholar
  35. 35.
    Dzierzak, E and Medvinsky, A. (1995) TIG 11, 359–366Google Scholar
  36. 36.
    Medvinsky, A. &Dzierzak, E. (1996) Cell 86, 897–906.PubMedCrossRefGoogle Scholar
  37. 37.
    Yoder, M. C., Hiatt, K., Dutt, P., Mukhetjee, P., Bodine, D. M. Orlic, D. (1997) Immunity 7, 335–344.Google Scholar
  38. 38.
    Morrison, S. J.. Uchida, N., and Weissman, I. L. (1995) Annu. Rev. Cell Dev. Biol. 11, 35–71.Google Scholar
  39. 39.
    Tibbets, T. Personal communication. Lactoferrin immunolocalization in the mouse uterus.Google Scholar
  40. 40.
    Inoue, M.. Yamada, J., Kitamura, N., Shimazaki, K.-I., Andren, A. &Yamashita, T. (1993) Tissue and Cell 25, 791–797.PubMedCrossRefGoogle Scholar
  41. 41.
    McMaster, M. T., Teng, C. T Dey, S. K. &Andrews, G. K. (1991) Mol. Endocrinol. 5. 101—I 1 I.Google Scholar
  42. 42.
    Wichmann, L., Vaalasti, A., Vaalasti, T. &Tuohimaa, P. (1989) Int. J. Androl. 12, 179–186.PubMedCrossRefGoogle Scholar
  43. 43.
    Heird, W. C., Schwarz, S. W. &Hansen, I. H. (1984) Pediat. Res. 18, 512–515.PubMedCrossRefGoogle Scholar
  44. 44.
    Kawakami, H. &Lonnerdal, B. (1991) Am. J. Physiol. 261, G841 — G846.PubMedGoogle Scholar
  45. 45.
    Masson, P. L., Heremans, J. F., Prignot, J. &Wauters, G. (1966) Thorax 21, 538–544.PubMedCrossRefGoogle Scholar
  46. 46.
    Miyauchi, J. (1984) Acta Histochem. Cytochem. 17, 177–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Pauline P. Ward
    • 1
  • Marisela M. Mendoza
    • 1
  • Odila Saucedo-Cardenas
    • 1
  • Christina T. Teng
    • 2
  • Orla M. Conneely
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA
  2. 2.National Institutes of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkUSA

Personalised recommendations