Advertisement

Mutations in Type I Procollagen Genes That Cause Osteogenesis Imperfecta

  • Darwin J. Prockop
  • Clinton T. Baldwin
  • Constantinos D. Constantinou
Part of the Advances in Human Genetics book series (AHUG, volume 19)

Abstract

Recent data from several laboratories have demonstrated that most forms of osteogenesis imperfecta (OI) are caused by mutations in one of the two structural genes for type I procollagen. Few, if any, are in the many other genes expressed in bone. This surprising conclusion has several implications for other genetic diseases that involve connective tissues as well as several more common diseases.

Keywords

Collagen Fibril Osteogenesis Imperfecta Triple Helix Collagen Relate Lethal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, K., Ogilvie, D., Honeyman, M., Thompson, E., and Sykes, B., 1988, Homozygous osteogenesis imperfecta unlinked to collagen genes, Hum. Genet. 78: 233–236.PubMedCrossRefGoogle Scholar
  2. Bailey, A. J., and Lapiere, C. M., 1973, Effect of an additional peptide extension of the N-terminus of collagen from dermatosparactic calves on cross-linking of collagen fibres, Eur. J. Biochem. 34: 91–96.PubMedCrossRefGoogle Scholar
  3. Baldwin, C. T., Constantinou, C. D., Dumars, K. W., and Prockop, D. J., 1989, A single base mutation that converts glycine 907 of the a2(I) chain of type I procollagen to aspartate in a lethal variant of osteogenesis imperfecta. The single amino acid substitution near the carboxy-terminus destabilizes the whole triple helix, J. Biol. Chem. 264: 3002–3006.PubMedGoogle Scholar
  4. Barsh, G. S., and Byers, P. H., 1981, Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta, Proc. Natl. Acad. Sci. USA 78: 5142–5146.PubMedCrossRefGoogle Scholar
  5. Barsh, G. S., David, K. E., and Byers, P. H., 1982, Type I osteogenesis imperfecta: A nonfunctional allele for proal(I) chains of type I procollagen, Proc. Natl. Acad. Sci. USA 79: 3838–3842.PubMedCrossRefGoogle Scholar
  6. Barsh, G. S., Roush, C. L., Bonadio, J., Byers, P. H., and Gelinas, R. E., 1985, Intronmediated recombination may cause a deletion in an al type I collagen chain in a lethal form of osteogenesis imperfecta, Proc. Natl. Acad. Sci. USA 82: 2870–2874.PubMedCrossRefGoogle Scholar
  7. Bateman, J. F., Chan, D., Walker, I. D., Rogers, J. G., and Cole, W. G., 1987, Lethal perinatal osteogenesis imperfecta due to the substitution of arginine for glycine at residue 391 of the al(I)-chain of type I collagen, J. Biol. Chem. 262: 7021–7027.PubMedGoogle Scholar
  8. Bateman, J., Lamande, S., Dahl, H., Chan, D., and Cole, W., 1989, Substitution of arginine for glycine 664 in the collagen al(I) chain in osteogenesis imperfecta: in vitro expression of the mutated cDNA, Collagen Related Res., 8:501[abstract].Google Scholar
  9. Bernard, M. P., Chu, M.-L., Myers, J. C., Ramirez, F., Eikenberry, E. F., and Prockop, D. J., 1983, Nucleotide sequences of complementary deoxyribonucleic acids for the proal chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution, Biochemistry 22: 5213–5223.PubMedCrossRefGoogle Scholar
  10. Bleck, E. E., 1981, Nonoperative treatment of osteogenesis imperfecta: Orthotic and mobility management, Clin. Orthop. 159: 111–122.PubMedGoogle Scholar
  11. Boedtker, H., Finer, M., and Aho, S., 1986, The structure of the chicken a2 collagen gene, Ann. N.Y. Acad. Sci. 460: 85–116.CrossRefGoogle Scholar
  12. Bonadio, J., Patterson, E., and Smiley, E., 1989, RNA sequence analysis of perinatal lethal OI mutations, Collagen Related Res., 8:506[abstract].Google Scholar
  13. Bruckner, P., and Prockop, D. J., 1981, Proteolytic enzymes as probes for the triple-helical conformation of procollagen, Analyt. Biochem. 110: 360–368.PubMedCrossRefGoogle Scholar
  14. Byers, P. H., 1983, Inherited disorders of collagen biosynthesis: Ehlers—Danlos syndrome, the Marfan syndrome and osteogenesis imperfecta. in: Clinical Medicine, J. A. Spittel, Jr., ed., Harper and Row, Philadelphia, pp. 1–41.Google Scholar
  15. Byers, P. H., Tsipouras, P., Bonadio, J. F., Starman, B. J., and Schwartz, R. C., 1988, Perinatal lethal osteogenesis imperfecta (OI) type II: A biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen, Am. J. Hum. Genet. 42: 237–248.PubMedGoogle Scholar
  16. Byers, P. H., Cohn, D. H., Starman, B. J., Wallis, G. A., and Willing, M. C., 1989, Molecular geography: Nature and location of mutations in the COL1A1 and COL1A2 genes predicts clinical phenotype in osteogenesis imperfecta, Collagen Related Res., 8:500[abstract].Google Scholar
  17. Cassidy, K., Eikenberry, E. F., Olsen, B. R., and Brodsky, B., 1980, X-ray diffraction investigations of collagen fibril structure in dermatosparactic lamb, Lab. Invest. 43: 542–546.PubMedGoogle Scholar
  18. Chu, M.-L., Williams, C. J., Pepe, G., Hirsch, J. L., Prockop, D. J., and Ramirez, F., 1983, Internal deletion of a collagen gene in parinatal lethal form of osteogenesis im-perfecta, Nature 304: 78–80.PubMedCrossRefGoogle Scholar
  19. Chu, M.-L., Gargiulo, V., Williams, C. J., and Ramirez, F., 1985, Multiexon deletion in an osteogenesis imperfecta variant with increased type III collagen mRNA, J. Biol. Chem. 260: 691–694.PubMedGoogle Scholar
  20. Cohn, D. H., Byers, P. H., Steinmann, B., and Gelinas, R. E., 1986, Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human proal(I) collagen allele, Proc. Natl. Acad. Sci. USA 83: 6046–6047.Google Scholar
  21. Cohn, D. H., Apone, S., Eyre, D., Starman, B., Andreassen, P., Charbonneau, H., Pope, F. M., Nicholls, A., and Byers, P. H., 1988, A Cysteine for glycine substitution outside of the triple helical domain of the al(I) chain produces mild, dominantly inherited osteogenesis imperfecta, Collagen Related Res., 8:501[abstract].Google Scholar
  22. Cohn, D. H., Apone, S., Eyre, D. R., Starman, B. J., Andreassen, P., Charbonneau, H., Nicholls, A. C., Pope, F. M., and Byers, P. H., 1988, Substitution of cysteine for glycine within the carboxyl-terminal telopeptide of the al chain of type I collagen produces mild osteogenesis imperfecta. J. Biol. Chem., 263: 14605–14607.PubMedGoogle Scholar
  23. Cole, W. G., Chan, D., Chambers, G. W., Walker, I. D., and Bateman, J. F., 1986, Deletion of twenty-four amino acids from the proal(I) chain of type I procollagen in a patient with the Ehlers–Danlos syndrome type VII, J. Biol. Chem. 261: 5496–5503.PubMedGoogle Scholar
  24. Constantinou, C. D., Nielsen, K. B., and Prockop, D. J., 1989, A lethal variant of osteogenesis imperfecta has a single base mutation that substitutes cysteine for glycine 904 of the al(I) chain of type I procollagen. The asymptomatic mother has a different mutation producing an over-modified and unstable type I procollagen, J. Clin. Invest. 83: 574–584.PubMedCrossRefGoogle Scholar
  25. Deak, S. B., Nicholls, A., Pope, F. M., and Prockop, D. J., 1983, The molecular defect in a non-lethal variant of osteogenesis imperfecta. Synthesis of proa2(I) Chains which are not incorporated in trimers of type I procollagen, J. Biol. Chem. 258: 15192–15197.PubMedGoogle Scholar
  26. De Vries, W. N., and de Wet, W. J., 1986, The molecular defect in an autosomal domain form of osteogenesis imperfecta. Synthesis of type I procollagen containing cysteine in the triple-helical domain of proal(I) chains, J. Biol. Chem. 261: 9056–9064.PubMedGoogle Scholar
  27. De Vries, W. N., and de Wet, W. J., 1987, Cysteine in al chains of human type I collagen produces a clinical heterogeneous form of osteogenesis imperfecta, in: UCLA Symposium on Molecular Biology and Cellular Biology—New Series, Vol. 45, A. Sen and T. Thornhill, eds., Liss, New York, pp. 56–64.Google Scholar
  28. De Wet, W. J., Pihlajaniemi, T., Myers, J., Kelly, T. E., and Prockop, D. J., 1983, Synthesis of a shortened proa2(I) chain and decreased synthesis of proa2(I) chains in a patient with osteogenesis imperfecta, J. Biol. Chem. 258: 7721–7728.PubMedGoogle Scholar
  29. De Wet, W., Bernard, M., Benson-Chanda, V., Chu, M.-L., Dickson, L., Weil, D., and Ramirez, F., 1987, Organization of the human pro-a2(I) collagen gene, J. Biol. Chem. 262: 16032–16036.PubMedGoogle Scholar
  30. Dombrowski, K. E. and Prockop, D. J., 1988, Cleavage of type I and type II procollagens by type I/II procollagen N-proteinase: correlation of kinetic constants with the predicted conformations of procollagen substrates, J. Biol. Chem. 263: 16545–16552.PubMedGoogle Scholar
  31. Dombrowski, K. E., Vogel, B. E., and Prockop, D. J., 1989, Mutations that alter the primary structure of type I procollagen have long-range effects on its cleavage by procollagen N-proteinase, 28: 7107–7112.Google Scholar
  32. Eyre, D. R., Shapiro, F. D., and Aldridge, J. F., 1985, A heterozygous collagen defect in a variant of the Ehlers–Danlos syndrome type VII. Evidence for a deleted aminotelopeptide domain in the proal(I) chain, J. Biol. Chem. 259: 11322–11329.Google Scholar
  33. Hata, R., Kurata, S., and Shinkai, H., 1988, Existence of malfunctioning proa2(I) collagen genes in a patient with a proal(I)-chain-defective variant of Ehlers–Danlos syndrome, Evr. J. Biochem. 174: 231–237.Google Scholar
  34. Hulmes, D. J. S., Mould, A. P., Kadler, K. E., Chapman, J. A., and Prockop, D. J., 1989, Procollagen Processing control of type I collagen fibril assembly, in: Cytoskeleton and Extracellular Proteins. Structure, Interactions and Assembly, Second International EBSA Symposium, Springer Series in Biophysics, Vol. 3 ( U. Aebi and J. Engel, eds.), Springer-Verlag, Berlin, pp. 292–301.Google Scholar
  35. Kadler, K. E., Hojima, Y., and Prockop, D. J., 1987, Assembly of collagen fibrils de novo by cleavage of type I pCcollagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process, J. Biol. Chem. 260: 15696–15701.Google Scholar
  36. Kadler, K. E., Hojima, Y., and Prockop, D. J., 1988a, Assembly of type I collagen de novo. Between 37 and 41°C the process is limited by micro-unfolding of monomers, J. Biol. Chem. 263: 10072–10076.Google Scholar
  37. Kadler, K. E., Vogel, B. E., Hojima, Y., and Prockop, D. J., 1988b, A type I collagen with a cysteine-kink produces collagen fibrils with frayed ends and limits polymerization of the normal monomer, Collagen related Res., 8: 505–506.Google Scholar
  38. Kuivaniemi, H., Sabol, C., Tromp, G., Sippola-Thiele, M., and Prockop, D. J., 1988a, A 19-base pair deletion in the proa2(I) gene of type I procollagen that causes in-frame RNA splicing from exon 10 to exon 12 in a proband with atypical osteogenesis imperfecta and in his asymptomatic mother, J. Biol. Chem. 263: 11407–11413.PubMedGoogle Scholar
  39. Kuivaniemi, H., Tromp, G., Chu, M.-L., and Prockop, D. J., 19886, Structure of a full-length cDNA clone for the preproa2(I) chain of human type I procollagen. Comparison with the chick gene confirms unusual patterns of gene conservation, Biochem. J. 252: 633–640.Google Scholar
  40. McKusick, V. A., 1972, Heritable Disorders of Connective Tissue, 4th ed., Mosby, St. Louis, Missouri.Google Scholar
  41. Myers, J. C., Chu, M.-L., Faro, S. H., Clark, W. J., Prockop, D. J., and Ramirez, F., 1981, Cloning a cDNA for the proa2 chain of type I collagen, Proc. Natl. Acad. Sci. USA 78: 3516–3520.PubMedCrossRefGoogle Scholar
  42. Nicholls, A. C., Osse, G., Schloon, H. G., Lenard, H. G., Deak, S., Myers, J. C., Prockop, D. J., Weigel, W. R. F., Fryer, P., and Pope, F. M., 1984, The clinical features of homozygous a2(I) collagen deficient osteogenesis imperfecta, J. Med. Genet. 21: 257–262.PubMedCrossRefGoogle Scholar
  43. Penttinen, R. P., Lichtenstein, J. R., Martin, G. R., and McKusick, V. A., 1985, Abnormal collagen metabolism in cultured cells in osteogenesis imperfecta, Proc. Natl. Acad. Sci. USA 72: 586–589.CrossRefGoogle Scholar
  44. Piez, K. A., and Reddi, A. H., 1984, Extracellular Matrix Biochemistry, Elsevier, New York.Google Scholar
  45. Pihlajaniemi, T., Dickson, L. A., Pope, F. M., Lorhonen, V. R., Nicholls, A., Prockop, D. J., and Myers, J. C., 1984, Osteogenesis imperfecta. Cloning of a proa2(I) collagen gene with a frame-shift mutation, J. Biol. Chem. 259: 12941–12944.PubMedGoogle Scholar
  46. Privalov, P. L., 1982, Stability of proteins. Proteins which do not present a single cooperative unit, Adv. Protein Chem. 35: 1–104.PubMedCrossRefGoogle Scholar
  47. Prockop, D. J., and Guzman, N. A., 1977, Collagen diseases and the biosynthesis of collagen, Hosp. Practice 1977: 61.Google Scholar
  48. Prockop, D. J., and Kivirikko, K. I., 1984, Heritable diseases of collagen, N. Engl. J. Med. 311: 376–386.PubMedCrossRefGoogle Scholar
  49. Prockop, D. J., Kadler, K. E., Hojima, Y., Constantinou, C. D., Dombrowski, K. E., Kuivaniemi, H., Tromp, G., and Vogel, B., 1988, Expression of type I procollagen genes, in: Cell and Molecular Biology of Vertebrate Hard Tissues, D. Evered and S. Harnett, eds., Wiley, Chichester, p. 142.Google Scholar
  50. Prockop, D. J., Constantinou, C. D., Dombrowski, K. E., Hojima, Y., Kadler, K. E., Kuivaniemi, H., Tromp, G., and Vogel, B. E., 1989a, Type I procollagen. The gene—protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connnective tissue, Am. J. Med. Genet. 34: 60–67.PubMedCrossRefGoogle Scholar
  51. Prockop, D. J., Vogel, B. E., Doelz, R., Engel, J., Hojima, Y., and Kadler, K. E., 1989b, Effects of mutations that change primary structure of collagen on the self-assembly of the protein into fibrils, in: Springer Series in Biophysics, Volume 3 P. M. Bayley, ed., Springer-Verlag, Berlin, pp. 81–89.Google Scholar
  52. Sasaki, T., Katshuhiko, A., Ono, M., Yamaguchi, T., Furuta, S., and Nagai, Y., 1987, Ehlers-Danlos syndrome. A variant characterized by deficiency of proa2 chain of type I procollagen, Arch. Dermatol. 123: 176–179.CrossRefGoogle Scholar
  53. Shapiro, J. R., Pikus, A., Weiss, G., and Rowe, D. W., 1982, Hearing and middle ear function in osteogenesis imperfecta, J. Am. Med. Assoc. 247: 2120–2126.CrossRefGoogle Scholar
  54. Sillence, D., 1981, Osteogenesis imperfecta: An expanding panorama of variants, Clin. Orthopaed. Realted Res. 159: 11–25.Google Scholar
  55. Sippola, M., Kaffe, S., and Prockop, D. J., 1984, A heterozygous defect for structurally altered proa2 chains of type I procollagen in a mild variant of osteogenesis imperfecta. The altered structure decreases the thermal stability of procollagen and makes it resistant to procollagen N-proteinase, J. Biol. Chem. 259: 14094–14100.PubMedGoogle Scholar
  56. Steinmann, B., Tuderman, L., Peltonen, L., Martin, G. R., McKusick, V. A., and Prockop, D. J., 1980, Evidence for a structural mutation of procollagen type I in a patient with Ehlers—Danlos syndrome type VII, J. Biol. Chem. 255: 8887–8893.PubMedGoogle Scholar
  57. Steinmann, B., Rao, V. H., Vogel, A., Bruckner, P., Gitzelmann, R., and Byers, P. H., 1984, Cysteine in the triple-helical domain of one allelic product of the al(I) chain of type I collagen produces a lethal form of osteogenesis imperfecta, J. Biol. Chem. 259: 11129–11138.PubMedGoogle Scholar
  58. Steinmann, B., Nicholls, A., and Pope, F. M., 1986, Clinical variability of osteogenesis imperfecta reflecting molecular heterogeneity. Cysteine substitutions in the al(I) collagen producing lethal and mild forms, J. Biol. Chem. 261: 8958–8964.PubMedGoogle Scholar
  59. Stolle, C. A., Pyeritz, R. E., Myers, J. C., and Prockop, D. J., 1985, Synthesis of an altered type III procollagen in a patient with type IV Ehlers—Danlos syndrome. A structural. change in the al(III) chain which makes the protein more susceptible to proteinases, J. Biol. Chem. 260: 1937–1944.PubMedGoogle Scholar
  60. Sykes, B., Francis, M. J. 0., and Smith, R., 1977, Altered relation of two collagen types in osteogenesis imperfecta, N. Engl. J. Med. 296: 1200–1203.Google Scholar
  61. Sykes, B., Ogilvie, D., Wordsworth, P., Anderson, J., and Jones, N., 1986, Osteogenesis imperfecta is linked to both type I procollagen structural genes, Lancet 2: 69–72.PubMedCrossRefGoogle Scholar
  62. Sykes, B. C., Ogilvie, D. J., Wordsworth, B. P., Wallis, G., Matthew, C., Beighton, B., Nicholls, A., Pope, F. M., Thompson, A., Tsipouras, P., Schwarz, R., Jensson, 0., Arnason, A., Borressen, A.-L., Frey, D., and Steinmann, B., 1988, Consistent linkage of dominantly inherited osteogenesis imperfecta to collagen I genes, Collagen Related Res., 8:514[abstract].Google Scholar
  63. Trelstad, R. L., Rubin, D., and Gross, J., 1977, Osteogenesis imperfectacongenita: Evidence for a generalized molecular disorder of collagen, Lab. Invest. 36: 501–508.PubMedGoogle Scholar
  64. Tromp, G., and Prockop, D. J., 1988, A single base mutation in the proa2(I) procollagen gene that causes efficient splicing of RNA from exon 27 to 29 and synthesis of a shortened but in-frame proa2(I) chain (lethal 01), Proc. Natl. Acad. Sci. USA 85: 5254–5258.PubMedCrossRefGoogle Scholar
  65. Tromp, G., Kuivaniemi, H., Stacey, A., Shikata, H., Baldwin, C. T., Jaenisch, R., and Prockop, D. J., 1988, Structure of a full-length eDNA clone for the preproal(I) chain of human type I procollagen, Biochem. J. 253: 919–911.PubMedGoogle Scholar
  66. Tsipouras, P., Flodman, P., Quarrell, 0., Harper, P. S., and Weksberg, R., 1989, Mild osteogenesis imperfecta is not always associated with defects in type I collagen, and it is not always inherited as a dominant trait. Collagen Related Res., 8:512[abstract].Google Scholar
  67. Tuderman, L., Kivirikko, K. I., and Prockop, D. J., 1978, Partial purification and characterization of a neutral protease which cleaves the N-terminal propeptides from pro-collagen, Biochemistry 17: 2948–2952.PubMedCrossRefGoogle Scholar
  68. Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J., 1987, A point mutation in a type I procollagen gene converts glycine 748 of the al chain to cysteine and destabilizes the triple helix in a lethal variant of osteogenesis imperfecta, J. Biol. Chem. 262: 14737–14744.PubMedGoogle Scholar
  69. Vogel, B. E., Doelz, R., Kadler, K. E., Hojima, Y., Engel, J., and Prockop, D. J., 1988, A substitution of cysteine for glycine 748 of the al chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away, J. Biol. Chem. 263: 19249–19255.PubMedGoogle Scholar
  70. Weil D., Bernard, M., Combate, N., Wirtz, M. K., Hollister, D. W., Steinmann, B., and Ramirez, F., 1988, Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers—Danlos syndrome variant, J. Biol. Chem. 263: 8561–8564.PubMedGoogle Scholar
  71. Wenstrup, R. J, Cohn, D. H., Cohen, T., and Byers, P. H., 1988, Arginine for glycine substitution in the triple-helical domain of the products of one a2(I) collagen allele (COL1A2) produces the osteogenesis imperfecta type IV phenotype, J. Biol. Chem. 263: 7734–7740.PubMedGoogle Scholar
  72. Williams, C. J., and Prockop, D. J., 1983, Synthesis and processing of a type I procollagen containing shortened proal(I) chains of fibroblasts from a patient with osteogenesis imperfecta, J. Biol. Chem. 258: 5915–5921.PubMedGoogle Scholar
  73. Wirtz, M. K., Glanville, R. W., Steinmann, B., Rao, V. H., and Holister, D. W., 1987, Ehlers—Danlos syndrome type VIIB. Deletion of 18 amino acids comprising the Ntelopeptide region of a proa2(I) chain, J. Biol. Chem. 262: 16376–16385.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Darwin J. Prockop
    • 1
  • Clinton T. Baldwin
    • 1
  • Constantinos D. Constantinou
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations