Formation of (Bi,Pb)-2223 Phase during Solidifying and Sintering

  • X. Y. Lu
  • A. Nagata
  • K. Sugawara
  • S. Kamada
  • M. Nagano
  • Y. Wakiya
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

High-temperature microstructures and the formation of (Bi,Pb)-2223 phase were examined in Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06Ox during solidifying and sintering by high temperature optical microscope, XRD, SEM, EDS and AC susceptibility measurement. During solidification, firstly, the needle-like phase (SrxCa1-x) 2CuO3 began to crystallize at about 930 °C, secondly, the (SrxCa1-x) CuO2 with rectangular shape began to crystallize around 890 °C, and finally the plate-like 2212 phase began to form by the peritectic reaction of the two (Sr.Ca)-Cu-O compounds and liquid phase below 870 °C. The 2223 phase and Sr6Pb2O9 were transformed slowly by the solid state reaction of the 2212 phase and residual (Sr,Ca)-Cu-O compounds in a long time sitering (> 18 h) at 840 °C after solidification.

Keywords

Furnace Pb209 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Japan. J. Appl. Phys. 27:L209 (1988).CrossRefGoogle Scholar
  2. 2.
    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii and H. Mazaki, Japan. J. Appl. Phys. 27:L1041 (1988).CrossRefGoogle Scholar
  3. 3.
    S.A. Sunshine T. Siegrist, L.F. Schneemeyer, D.W. Murphy, R.J. Cava, R. Battlogg, R.R. Van Dover, R.M. Fleming, S.H. Glarum, S. Nakahara, R. Farrow, J.J. Krajewski, S.M. Zahurak, J.V. Waszczak, J.H. Marshall, P. March, L.W. Rupp and W.F. Peck, Phys. Rev. R38:893 (1988).CrossRefGoogle Scholar
  4. 4.
    U. Fndo, S. Koyama and T. Kawai, Japan. J. Appl. Phys. 27:L1467 (1988).CrossRefGoogle Scholar
  5. 5.
    M.R. Chandrachood, I.S. Mulla and A.P.B. Sinha. Appl. Phys. Lett. 55:1472 (1989).CrossRefGoogle Scholar
  6. 6.
    D. Shi, M. Blank, M. Patel, D.G. Hinks, A.W. Mitchell, K. Vandervoort and H. Clauss, Physica C, 156:822 (1988).CrossRefGoogle Scholar
  7. 7.
    V.P.N. Padmanaban and K. Shabi, Solid State Commun. 83:123 (1992).CrossRefGoogle Scholar
  8. 8.
    Y.T. Huang, C.Y. Shei, W.N. Wang, C.K. Chian and W.H. Lee, Physica C, 169:76 (1990).CrossRefGoogle Scholar
  9. 9.
    P. Majewski, B. Hettich, H. Jaeger and K. Schulze, Adv. Mater. 3:67 (1991).CrossRefGoogle Scholar
  10. 10.
    Y. Ikeda, H. Ito, S. Shimomura. Y. Oue and K. Inaba, Physica C, 159:93 (1989).CrossRefGoogle Scholar
  11. 11.
    W. Assmus and W. Schmidbauer, Supercond. Sci. Technol. 6:555 (1993).CrossRefGoogle Scholar
  12. 12.
    P. Strobel, J.C. Toledano, D. Morin, J. Schneck, G. Vacquier, O. Monnereau, J. Primot and T. Fournier, Physica C, 201:27 (1992).CrossRefGoogle Scholar
  13. 13.
    S. Koyama, U. Endo and T. Kawai, Japan. J. Appl. Phys. 27:L1861 (1988).CrossRefGoogle Scholar
  14. 14.
    S.S. Oh and K. Osamura, Supercond. Sei. Technol. 4:239 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • X. Y. Lu
    • 1
  • A. Nagata
    • 1
  • K. Sugawara
    • 1
  • S. Kamada
    • 1
  • M. Nagano
    • 2
  • Y. Wakiya
    • 2
  1. 1.Mining CollegeAkita UniversityAkita 010Japan
  2. 2.Applied Technology R&D CenterTohoku Electric Power Co. Inc.Sendai 981Japan

Personalised recommendations