Advertisement

Dissipation in BSCCO Superconductors: Influence of Pinning Centres

  • I. Kušević
  • E. Babić
  • H. K. Liu
  • M. Ionescu
  • S. X. Dou
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

The critical current densities Jc and the activation energies U(T, B) for the thermally activated motion of vortices in four well-characterized Ag-clad Bi2223 and Bi2212 tapes have been determined. The observed Jc(77 K, B=0)≤39000 A/cm2 belong to the upper class of the results obtained so far for these materials. Like in other BSCCO samples U shows a (Tc-T) and ~B variations with T and B respectively. The comparison of pinning potentials U0(B)=U(T=0, B) for tapes with those for the other types (single crystal, thin film) of Bi2212 and Bi2223 samples shows that at lower field U0 depends more on the type of the sample than on the particular compound. For the same B, U0 systematically increase in order of single crystal, thin film and tape which indicates that in BSCCO compounds, in addition to anisotropy, the specific pinning centres (introduced during processing of the sample) affect the flux motion at lower B. This conclusion is supported with a weaker field dependence of Jc in tapes exhibiting higher U0. At elevated B (≈10 T) all U0 data seem to converge reaching values (U0~300 K) typical for pinning by oxygen vacancies. At lower B, the variations of U0, Jc and the volume pinning force Fp with B for tapes seem consistent with the collective pinning of vortices. The lack of correlation between the magnitudes of Jc, U0 and Fpmax is explained in terms of the percolative current path in these inhomogeneous materials.

Keywords

Oxygen Vacancy Critical Current Density Epitaxial Films3 Flux Line Vortex State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for instance: Proceedings of the 7th International Workshop on Critical Currents in Superconductors, ed. by H. W. Weber, World Scientific Publ. Co., Singapore (1994),Google Scholar
  2. 2.
    I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, and T. Kawai, Phys. Rev. B45: 7414 (1992),CrossRefGoogle Scholar
  3. 3.
    J. T. Kucera, T. P. Orlando, G. Virshup, and J. N. Eckstein, Phys. Rev. B46: 11004 (1992), and ref. therein,CrossRefGoogle Scholar
  4. 4.
    P. Wagner, F. Hilmer, U. Frey, and H. Adrian, Phys. Rev. B49: 13184 (1994),CrossRefGoogle Scholar
  5. 5.
    H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, and K. Kajimura, Phys. Rev. Lett. 70: 3331 (1993),CrossRefGoogle Scholar
  6. 6.
    H.K. Liu, Y.C. Gou, S.X. Dou, S.M. Cassidy, L.F. Cohen, G.K. Perkins, A.D. Caplin, and N. Savvides, Physica C213:95(1993),Google Scholar
  7. 7.
    E. Babic, I. Kusevic, S. X. Dou, H. K. Liu, and Q. Y. Hu, Phys. Rev. B49: 15312 (1994),CrossRefGoogle Scholar
  8. 8.
    I. Kuševic, E. Babic, J. Ivkov, Ž. Marohnic, H. K. Liu, Q. Y. Hu, and S. X. Dou, Solid State Commun. 92:735(1994),CrossRefGoogle Scholar
  9. 9.
    J. Löhle, K. Mattenberger, O. Vogt, and P. Wachter, J. Appl. Phys. 72: 1030 (1992),CrossRefGoogle Scholar
  10. 10.
    T. T. M. Palstra, R. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B41: 6621 (1990),CrossRefGoogle Scholar
  11. 11.
    L. N. Bulaevskii, L. L. Daemen, M. P. Maley, and J. Y. Coulter, Phys. Rev. B48: 13798 (1993), and ref. therein,CrossRefGoogle Scholar
  12. 12.
    A. I. Larkin, Yu. N. Ovchinnikov, J. Low Temp. Physics 34: 409 (1979),CrossRefGoogle Scholar
  13. 13.1.
    Kusevic, Z. Marohnic, E. Babic, J. Ivkov, M. Prester, H. K. Liu, Q. Y. Hu, and S. X. Dou, Proceedings of the 7th International Workshop on Critical Currents in Superconductors, ed. by H. W. Weber, World Scientific Publ. Co., Singapore (1994), p. 557.Google Scholar
  14. 14.
    S. X. Dou, H. K. Liu, M. Ionescu, W. G. Wang, E. Babic, and I. Kusevic, Physica B, in press,Google Scholar
  15. 15.
    M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev 181: 682 (1969),CrossRefGoogle Scholar
  16. 16.
    G. Blater, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 68: 875 (1992),CrossRefGoogle Scholar
  17. 17.
    C. J. van der Beek, and P. H. Kes, Phys. Rev. B43: 13032 (1991),CrossRefGoogle Scholar
  18. 18.
    P. Wagner, F. Hillmer, V. Frey, A. Hadish, Th. Becherer, S. Eckert, T. Steinborn, J. Wiesner, G. Wirth, and H. Adrian, Proceedings of the 7th International Workshop on Critical Currents in Superconductors, ed. by H. W. Weber, World Scientific Publ. Co., Singapore (1994), p. 371.Google Scholar
  19. 19.
    Q. Y. Hu, H. W. Weber, S. X. Dou, H. K. Liu, and H. W. Neumüller, J. of Alloys and Compounds 195: 515(1993),CrossRefGoogle Scholar
  20. 20.
    Ž. Marohnić, D. Drobac, E. Babic, H. K. Liu, and S. X. Dou, J. of Supercond. 7: 809 (1994),CrossRefGoogle Scholar
  21. 21.
    L. Niel, Cryogenics 32: 975 (1992) and ref. therein,Google Scholar
  22. 22.
    D. Dew-Hughes, Phil. Mag. 30: 293 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • I. Kušević
    • 1
  • E. Babić
    • 1
  • H. K. Liu
    • 2
  • M. Ionescu
    • 2
  • S. X. Dou
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Centre for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia

Personalised recommendations