Advertisement

Flux Pinning by Precipitates in Melt-Processed YBa2Cu3Ox — A Cavity Model

  • S. Sengupta
  • Donglu Shi
  • C. Varanasi
  • P. J. McGinn
  • V. Gorin
  • A. Buzdin
  • J. S. Luo
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

YBa2Cu3Ox has been processed by the solid-liquid melt growth method. Extremely small Y2BaCuO5 precipitates on the order of 10–100 nm have been found to be finely dispersed in the sample matrices. Magnetization measurements have shown that these samples exhibit much higher flux pinning strength compared to that of the traditionally melt-textured materials. A cavity model is used to interpret the observed pinning behavior.

Keywords

Attractive Force Critical Current Density Vortex Line Spherical Cavity Cylindrical Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donglu Shi, S. Sengupta, J. S. Luo, C. Varanasi, and P. J. McGinn, Physica C “Extremely fine precipitates and flux pinning in melt-processed YBa2Cu3Ox,” 213:179 (1993).Google Scholar
  2. 2.
    C. Varanasi, S. Sengupta, P. J. McGinn, and D. Shi, “An alternative method to introduce fine Y2BaCuOx precipitates into YBa2Cu3Ox with enhanced flux pinning,” 2:117 (1994).Google Scholar
  3. 3.
    J. Slicox, and R. W. Rollins, “Hysteresis in hard superconductors,” Appl. Phys. Lett. 2:231 (1963).CrossRefGoogle Scholar
  4. 4.
    G. Antesberger, and H. Ullmaier, “Pinning of vortices in superconducting NbTa alloy due to normal conducting precipitates,” Phil. Mag. 29:1101 (1974).CrossRefGoogle Scholar
  5. 5.
    J. Friedal, P. G. De Gennes, J. Matricon, “Nature of the driving force in flux creep phenomena,” Appl. Phys. Letts. 2, 119 (1963).CrossRefGoogle Scholar
  6. 6.
    L. N. Shehata, “Pinning by microscopic cavity in a type II superconductor,” Phys. Stat. Sol. (b) 105:77 (1981).CrossRefGoogle Scholar
  7. 7.
    L. L. Daemen, and J. E. Gubernatis, “Exact solution of the London equation in toe dimensions,” Phys. Rev. B 43:413 (1991).CrossRefGoogle Scholar
  8. 8.
    G. S. Mkrtchyan, and V. V. Shmidt, “Interaction between cavity and a vortex in s superconductor of the second kind,” Sov. Phys. JETP 34:195 (1972).Google Scholar
  9. 9.
    W. E. Timms, and D. G. Walmsley, Phys. Stat. Sol. (b) 71:741 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. Sengupta
    • 1
  • Donglu Shi
    • 2
  • C. Varanasi
    • 3
  • P. J. McGinn
    • 3
  • V. Gorin
    • 4
  • A. Buzdin
    • 4
  • J. S. Luo
    • 4
  1. 1.Superconductive Components, Inc.ColumbusUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CincinnatiUSA
  3. 3.Department of Chemical EngineeringUniversity of Notre DameNotre DameUSA
  4. 4.Argonne National LaboratoryArgonneUSA

Personalised recommendations