Advertisement

Jc Performance of Ag Sheathed Bi-2223 HTS Composite Conductors

  • Q. Li
  • S. Fleshler
  • P. J. Walsh
  • M. W. Rupich
  • W. L. Carter
  • E. R. Podtburg
  • G. N. RileyJr.
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

High critical current densities in the commercially interesting Ag sheathed Bi-2223 HTS composite conductors have been achieved using the powder-in-tube (PIT) technique. At 77 K and self-field, average Jc performance of 50,000, 45,500, and 39,700 A/cm2 has been obtained for pressed monofilament, pressed multifilament, and rolled multifilament conductors, respectively. The electrical performance of both rolled and pressed multifilament tapes has been characterized in magnetic fields up to 7 T (B ⊥ tape-plane and B ‖ tape-plane) and in a temperature range from 50 to 85 K. Both samples show conventional exponential magnetic field dependence in the high-field regime. The decrease of Jc with increasing magnetic field for B ‖ tape-plane is found to be less substantial for the rolled tape than for the pressed tape leading to a better Jc retention characteristic for the rolled tape.

Keywords

Critical Current Density Anisotropy Ratio Composite Conductor High Critical Current Density Rolled Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ueyama, T. Hikata, T. Kato, and K. Sato, Jpn. J. Appl. Phys. 30:L1384(1991).CrossRefGoogle Scholar
  2. 2.
    Y. Yamada, M. Satou, S. Murase, T. Kitamura, and Y. Kamisada, Proc. 5th Intl. Symp. on Supercon. (ISS92) 717(1993).Google Scholar
  3. 3.
    Q. Li, K. Brodersen, H.A. Hjuler, and T. Freltoft, Physica C 217:360(1993).CrossRefGoogle Scholar
  4. 4.
    H. Mukai, N. Shibuta, K. Sato, T. Hara, H. Ishii, and T. Yamamoto, Mater. Res. Soc. Symp. Proc. 275:633(1992).CrossRefGoogle Scholar
  5. 5.
    J. Yau and N. Savvides, Appl. Phys. Lett. 65:1454(1994).CrossRefGoogle Scholar
  6. 6.
    A. Otto, L.J. Masur, J. Gannon, E.R. Podtburg, D. Daly, G.J. Yurek, and A.P. Malozemoff, IEEE Trans. Appl. Supercon. 3:915(1993).CrossRefGoogle Scholar
  7. 7.
    W.L. Carter, G.N. Riley Jr., A. Otto, D.R. Parker, C.J. Christopherson, L.J. Masur, and D. Buczek, IEEE. Trans. Appl. Supercon. 5:1145(1995).CrossRefGoogle Scholar
  8. 8.
    D.A. Korzekwa, J.F. Bingert, E.R. Podtburg, and P. Miles, Appl. Supercon. 2:261(1994).CrossRefGoogle Scholar
  9. 9.
    M.P. Maley, P.J. Kung, J.Y. Coulter, W.L. Carter, G.N. Riley Jr., and M.E. McHenry, Phys. Rev. B 45:7566(1992).CrossRefGoogle Scholar
  10. 10.
    J.E. Tkaczyk, R.H. Arendt, M.F. Garbauskas, H.R. Hart, K.W. Lay, and E.F. Luborsky, Phys. Rev. B 45:506(1992).Google Scholar
  11. 11.
    G. Grasso, A. Perin, B. Hensel, and R. Flükiger, Physica C, 217:335 (1993).CrossRefGoogle Scholar
  12. 12.
    B. Hensel, J.C. Grivel, A. Jeremie, A. Perin, A. Polloni and R. Flukiger, Physica C 205:329 (1993).CrossRefGoogle Scholar
  13. 13.
    K. Sato, K. Ohkura, K. Hayashi, T. Hikata, T. Kaneto, T. Kato, M. Ueyama, J. Fujikami, K. Muranaka, S. Kobayashi, and N. Saga, Proc. Inter Workshop on Supercon. 234(1995).Google Scholar
  14. 14.
    H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Misawa, S. Yoshida, and K. Kajimura, IEEE Trans. Appl. Supercon. 3:1536 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Q. Li
    • 1
  • S. Fleshler
    • 1
  • P. J. Walsh
    • 1
  • M. W. Rupich
    • 1
  • W. L. Carter
    • 1
  • E. R. Podtburg
    • 1
  • G. N. RileyJr.
    • 1
  1. 1.American Superconductor CorporationWestboroughUSA

Personalised recommendations