Formation Mechanism of (Bi, Pb)2Sr2Ca2Cu3O10 Phase and Critical Current in Silver Clad Superconducting Tape

  • Q. Y. Hu
  • H. K. Liu
  • S. X. Dou
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


X-ray diffraction method was used to characterise the phase composition and investigate the formation mechanism of the (Bi,Pb)2Sr2Ca2Cu3O10 phase from the precursor with (Bi,Pb)2Sr2CaCu2O8 as the main phase. The reaction is found to be a two-dimensional nucleation (random)-growth type, (-(ln(l-F))1/2=kt, where F is the conversional fraction of (Bi,Pb)2Sr2CaCu2O8 and t is the sintering time. The critical current of the tape is quantitatively related to the conversional fraction of (Bi,Pb)2Sr2CaCu2O8 to (Bi,Pb)2Sr2Ca2Cu3O10 phase. In low fraction regime of (Bi,Pb)2Sr2CaCu208, the critical current of a tape shows no clear dependence on remaining (Bi,Pb)2Sr2CaCu208 phase, other factors such as grain alignment, colony size, contact between colonies, and fine nonsuperconducting particles become important in controlling the Jc. Also, in this regime, the predominant weak links seems to be the colony boundaries rather than (Bi,Pb)2Sr2CaCu208 phase.


Critical Current Critical Current Density Sinter Time Fractional Conversion Colony Boundary 
These keywords were added by machine and not by the authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Tenbrink, L.K. Heine, and H. Krauth, Cryogenics 30: 422 (1990).CrossRefGoogle Scholar
  2. 2.
    Q. Y. Hu, H. W. Weber, F. M. Sauerzopf, G. W. Schulz, R. M. Schalk, H. W. Neumüller, and S. X. Dou. Appl. Phys. Lett. 65: 3008 (1994).CrossRefGoogle Scholar
  3. 3.
    S.X. Dou, H.K. Liu, C. C. Sorrell, K.-H. Song, M.H. Apperley, S.J. Guo, K.E. Eastcrling and W.K. Jones, Materials Forum 14: 92 (1990).Google Scholar
  4. 4.
    T. Hatano, K. Aota, S. Ikeda, K. Nakamura, and K. Ogawa, Jap. J. Appl. Phys. 27: (1988) L2055.CrossRefGoogle Scholar
  5. 5.
    M. Wang, G. Xiong, X. Tang, and Z. Hong, Physica C 210: 413 (1993).CrossRefGoogle Scholar
  6. 6.
    J.S. Luo, N. Merchant, V.A. Maroni, D-M. Gruen, B.S. Tani, W.L. Carter, and G.N. Riler Jr., Appl. Supercon. 1: 101 (1993).CrossRefGoogle Scholar
  7. 7.
    N. L. Wu, T. C. Wei, S. Y. Hou, and S.Y. Wong, J. Mater. Res. 5: 2056 (1990).CrossRefGoogle Scholar
  8. 8.
    R. Liang, H. Ishii, H. Kawaji, M. Itoh, and T. Nakamura, Jpn. J. Appl. Phys. 29: L1412 (1990).CrossRefGoogle Scholar
  9. 9.
    A. Nozue, H. Nasu, K. Kamiya, Jpn. J. Appl. Phys. 28: L2161 (1989).CrossRefGoogle Scholar
  10. 10.
    B.L. Averbach and M. Cohen, Trans. AIME, 176: 401 (1948).Google Scholar
  11. 11.
    K. Schultze, P. Majewski, B. Hettich, and G. Petzow, Z. Metallkde. 81: 836 (1990).Google Scholar
  12. 12.
    Y. Ikeda, H. Ito, S. Shimomura, Z. Hiroi, M. Takano, Y. Bando, J. Takada, K. Oda, H. Kitaguchi. Y. Miura, Y. Takeda and T. Takada, Physica C 190: 18 (1991).Google Scholar
  13. 13.
    Y. Yamada, B. Oberst, and R. Flükiger, Supercon. Sci. Technol. 4: 165 (1991).CrossRefGoogle Scholar
  14. 14.
    Y. Hayashi, H. Kogure and Y. Gondo, Jpn. J. Appl. Phys. 28: L2182 (1989).CrossRefGoogle Scholar
  15. 15.
    A. Blazek, Thermal Analysis, Van Nostrand Reinhold, London, (1973), p. 94.Google Scholar
  16. 16.
    H.K. Liu, R.K. Wang, and S.X. Dou, Physica C 229: 39 (1994).Google Scholar
  17. 17.
    Q.Y. Hu, R.M. Schalk, H.W. Weber, H.K. Liu, R.K. Wang, C. Czurda, and S.X. Dou. J. Appl. Phys., 78: July 1 issue (1995).Google Scholar
  18. 18.
    S.X. Dou, H.K. Liu, and Y.C. Guo, Physica C 194: 343 (1992).Google Scholar
  19. 19.
    H.K. Liu, Y.C. Guo, S.X. Dou, S.M. Cassidy, L.F. Cohen, G.K. Perkins A.D. Caplin and N. Savvides, Physica C 213: 95 (1993).Google Scholar
  20. 20.
    A. Umezawa, Y. Feng, H.S. Edelman, T.C. Willis, J.A. Parrell, D.C. Larbalestier, G.N. Riley and W.L. Carter, Physica C 219: 378 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Q. Y. Hu
    • 1
  • H. K. Liu
    • 1
  • S. X. Dou
    • 1
  1. 1.Centre for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia

Personalised recommendations