Advertisement

Thermal Relaxation Calorimeter for Measurement of Specific Heat of Small Samples Between 4 and 35 K

  • K. Kapkin
  • R. Radebaugh
  • K. D. Timmerhaus
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

We describe a thermal relaxation calorimeter which has been developed to investigate the thermal property characteristics of bulk films as small as 1 mg over the range of temperatures from 4 K to 35 K. The calorimeter is designed to be attachable to various liquid helium dewars to provide minimum liquid helium consumption and faster thermal cycling while demonstrating high sensitivity and reproducibility. Details of the calorimeter and its performance are given. Preliminary thermal property results associated with the sapphire sample holder are provided to show reproducibility of the measurements.

Keywords

Heat Capacity Liquid Helium Thermal Relaxation Heat Capacity Measurement Electrical Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. J. Buschow, J. F. Olijhoek and A. R. Miedema, “Extremely Large Heat Capacities Between 4 and 10 K”, Cryogenics, 15:261 (1975).CrossRefGoogle Scholar
  2. 2.
    M. Sahashi, Y. Tokai, T. Kuriyama, H. Nakagome, R. Li, M. Ogawa, and T. Hashimoto, “New Magnetic Material R3T System with Extremely Large Heat Capacities Used as Heat Regenerators”, Adv. Cryogenic Eng., 35:1175 (1990).Google Scholar
  3. 3.
    T. Kuriyama, R. Hakamada, H. Nakagome, Y. Tokai, M. Sahashi, R. Li, O. Yoshida, K. Matsumoto, and T. Hashimoto, “High Efficient Two-Stage GM Refrigerator with Magnetic Material in the Liquid Helium Temperature Region”, Adv. Cryogenic Eng., 35:1261 (1990).Google Scholar
  4. 4.
    E. L. Hershberg, I. E. Anderson, M. G. Osborne, M. F. Hundley, and J. L. Smith, “The Heat Capacity Characteristics of Er3Ni Below 20 K”, Adv. Cryogenic Eng., 40:617 (1994).Google Scholar
  5. 5.
    M. Ausloos and R. J. Elliot, “Magnetic Phase Transitions”, Springer-Verlag, (1983).CrossRefGoogle Scholar
  6. 6.
    F. J. Morin and J. P. Maita, “Specific Heats of Transition Metal Superconductors”, Phys. Rev. 129:1115 (1963).CrossRefGoogle Scholar
  7. 7.
    P. F. Sullivan and G. Seidel., “Steady-State, ac-Temperature Calorimetry”, Phys. Rev. 173:679 (1968).CrossRefGoogle Scholar
  8. 8.
    R. Bachmann, F. J. DiSalvo, T. H. Geballe, R. L. Greene, R. E. Howard C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H. U. Thomas, and R. B. Zubeck, “Heat Capacity Measurements on Small Samples at Low Temperatures,” Rev. Sci. Instrum. 43:205 (1972).CrossRefGoogle Scholar
  9. 9.
    S.R. Early, “Small Sample Calorimeter at Low Temperatures,” PhD Thesis, Stanford University, Stanford, CA, December (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • K. Kapkin
    • 1
  • R. Radebaugh
    • 2
  • K. D. Timmerhaus
    • 1
  1. 1.University of ColoradoBoulderUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations