The Effects of Oxygen Concentration, Stress, Temperature, and Cold Work on the Constant-Load Stress-Rupture Behavior of INCOLOY Alloy 908

  • M. M. Morra
  • M. M. Steeves
  • R. G. Ballinger
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Constant load stress rupture tests were performed on INCOLOY ® alloy 908*. The test matrix varied O2 concentration, applied load, temperature, and percent cold work.

The mechanism for high temperature intergranular fracture in alloy 908 is stress assisted intergranular oxidation cracking. A direct correlation between percent intergranular fracture and O2 concentration exists. This result is comparable to the oxidation assisted, intergranular fracture behavior of alloy 718. The depth of intergranular oxidation is controlled by both the O2 concentration and the Cr concentration in the alloy. A transition from intergranular to external oxidation in alloy 908 occurs when the concentration of O2 is below 0.1 ppm.

An oxygen concentration threshold based on zero percent intergranular fracture is a better indicator of the potential for intergranular fracture during heat treatment than one based on time to rupture. An O2 concentration below 0.1 ppm is recommended for heat treatment of alloy 908 in the presence of residual or applied tensile stresses.

Keywords

Fatigue Nickel Furnace Chromium Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Morra, S.M. Thesis, Massachusetts Institute of Technology, (February 1989).Google Scholar
  2. 2.
    M.M. Morra, R.G. Ballinger, J.L. Martin, M.O. Hoenig, and M.M. Steeves, “Advances in Cryogenic Engineering (Materials)”, 34, Plenum Press, NY (1987).Google Scholar
  3. 3.
    M.M. Morra, R.G. Ballinger, and I.S. Hwang, Met. Trans. A, 23A: 3177 (December 1992).Google Scholar
  4. 4.
    C.H. Jang, Ph.D. Thesis, Massachusetts Institute of Technology, (January 1995).Google Scholar
  5. 5.
    D.F. Smith, E.F. Clustworthy, D.G. Tipton, and W.L. Mankins, “Superalloys 1980”, ASM Int., Metals Park, OH, (1980), p. 521.CrossRefGoogle Scholar
  6. 6.
    K. Sato and T. Ohno, “Superalloys 1992”, ASM Metals Park, OH, (1992), p. 247.Google Scholar
  7. 7.
    E.A. Wanner and D.A. DeAntonio, “Superalloys 1992”, ASM Int., Metals Park, OH, (1992), p. 237.Google Scholar
  8. 8.
    S. Nicol, B.S. M.E. Thesis, Worcester Polytechnic Institute, (July 1993).Google Scholar
  9. 9.
    T.M. Anandan, J.A. Lewis, and M.M. Steeves, “Heat Treating”, (September 1990), p. 28.Google Scholar
  10. 10.
    M.M. Steeves, T.A. Painter, M. Takayasu, R.N. Randall, J.E. Tracey, I.S. Hwang, and M.O. Hoenig, IEEE Trans. Mag., 27: 2369, No. 2, (March 1991).CrossRefGoogle Scholar
  11. 11.
    M.M. Morra, Sc.D. Thesis, Massachusetts Institute of Technology, (June 1995).Google Scholar
  12. 12.
    H.H. Smith and P. Shahinian, and M.R. Achter, Trans. Met. Soc. of AIME, 245: 947 (May 1969).Google Scholar
  13. 13.
    M.R. Achter, G.J. Danek, Jr., and H.H. Smith, Trans. Met. Soc. of AIME, 227: 1296 (Dec. 1963).Google Scholar
  14. 14.
    T. Ericsson, Can. Met. Q. 18: 177, (1979).CrossRefGoogle Scholar
  15. 15.
    M. Gell and D.J. Duquette, “Corrosion Fatigue: Chemistry, Mechanics and Microstructure”, A.J. McEvily and R.W. Stuehle, eds., NACE, Houston, TX, (1972), p. 366.Google Scholar
  16. 16.
    S. Floreen and R.H. Kane, Fatigue of Eng. Mat. and Struct., 2: 401.Google Scholar
  17. 17.
    H.F. Merrick and S. Floreen, Met. Trans. A, 9A: 231 (Feb. 1978).CrossRefGoogle Scholar
  18. 18.
    J.P. Pedron and A. Pineau, Mater. Sci. and Eng., 56: 143 (1982).CrossRefGoogle Scholar
  19. 19.
    K.M. Chang, “Superalloys 718, 625, 706, and Various Derivatives”, E.A. Loria, ed., The Minerals, Metals & Materials Society, (1991), p. 447.Google Scholar
  20. 20.
    H. Ghonem, T. Nicholas and A. Pineau, Fatigue Fract. Engng. Mater. Struct., 16: 565, No. 5, (1993).CrossRefGoogle Scholar
  21. 21.
    K. Sadananda and P. Shahinian, Mater. Sci. and Eng., 43: 159 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Diboine and A. Pineau, Fatigue Fract. Engng. Mater. Struct., 10: 141, No. 2, (1987).CrossRefGoogle Scholar
  23. 23.
    K.R. Bain and R.M. Pelloux, Met.Trans., 15A: 381 (1984)CrossRefGoogle Scholar
  24. 24.
    M. Gao, D.J. Dwyer and R.P. Wei, “Superalloys 718, 625, 706 and Various Derivatives”, E.A. Loria, ed., The Minerals, Metals & Materials Society, (1994), p. 581.Google Scholar
  25. 25.
    K. Sadananda and P. Shahinian, “Micro and Macro Mechanics of Crack Growth”, K. Sadananda, B.B. Rath and D.J. Michel, eds., The Metallurgical Society of AIME, Warrendale, PA (1982), p. 119.Google Scholar
  26. 26.
    S. Floreen and R.H. Kane, Met.Trans., 10: 1745 (1979).CrossRefGoogle Scholar
  27. 27.
    K. Sadananda and P. Shahinian, “Corrosion of Nickel-Base Alloys”, ASM Int., Metals Park, OH, (1984), p.101.Google Scholar
  28. 28.
    E. Andrieu, Influence de L’environment sur la propagation des fissures dans un superalliage base nickel, L’Inconel 718, Thesis, Ecole des Mines de Paris, (1987)Google Scholar
  29. 29.
    E. Andrieu, R. Molins, H. Ghonem, and A. Pineau, Mat. Sci. and Eng., A154: 21 (1992).CrossRefGoogle Scholar
  30. 30.
    E. Andrieu, G. Hochstetter, R. Molins, and A. Pineau, “Superalloys 718, 625, 706, and Various Derivatives”, E.A. Loria, ed., The Minerals, Metals & Materials Society, (1994), p. 619.Google Scholar
  31. 31.
    R.A. Rapp, “Kinetics, Microstructures and Mechanisms of Internal Oxidation — Its Effect and Prevention in High temperature Alloy Oxidation”, NACE, St. Louis, MO, (March 1965), p. 382Google Scholar
  32. 32.
    J.H. Swisher, “Oxidation of Metals and Alloys”, ASM, OH, (1970), p. 235.Google Scholar
  33. 33.
    G.J. Lloyd and J.W. Martin, Met. Sci. J., 7: 74 (1973).Google Scholar
  34. 34.
    J.C. Hwang and R.W. Balluffi, Scrip. Met., 12: 709 (1978).CrossRefGoogle Scholar
  35. 35.
    Y. Shida, G.C. Wood, F.H. Stott, D.P. Whittle, and B.D. Bastow, Cor. Sci., 21: 581, No. 8, (1981).CrossRefGoogle Scholar
  36. 36.
    G.C. Wood, F.H. Stott, D.P. Whittle, Y. Shida, and B.D. Bastow, Cor. Sci., 23: 9, No. 1, (1983).CrossRefGoogle Scholar
  37. 37.
    M.M. Morra, S. Nicol, L. Toma, I.S. Hwang, M.M. Steeves, and R.G. Ballinger, “Advances in Cryogenic Engineering (Materials)”, 40, Plenum Press, NY, (1993), p. 1291.Google Scholar
  38. 38.
    M.M. Morra, R.G. Ballinger, and I.S. Hwang, Met.Trans. A, 23A: 3177 (December 1992).Google Scholar
  39. 39.
    L.S. Toma, M.M. Steeves, and R.P. Reed, Plasma Fusion Center Report # PFC/RR-94–2, Cambridge, MA, (March 1994).Google Scholar
  40. 40.
    S.T. Rolfe and J.M. Barsom, “Fracture and Fatigue Control in Structures, Applications of Fracture Mechanics”, Prentice-Hall, NJ, (1977).Google Scholar
  41. 41.
    R.W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, J.W. Wiley and Sons, NY, (1976).Google Scholar
  42. 42.
    M.F. Asby and B.F. Dyson, “Advances in Fracture Research (Fracture 84)”, Vol. 1, S.R. Valluri, D.M.R. Taplin, P. Ramarao, J.F. Knot, R. Dubey, eds., Pergamon Press, NY, (1984), p. 3.Google Scholar
  43. 43.
    R.M.N. Pelloux, Trans. ASM, 62: 281 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. M. Morra
    • 1
  • M. M. Steeves
    • 1
  • R. G. Ballinger
    • 2
  1. 1.Plasma Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departments of Nuclear Engineering and Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations