Advertisement

Effect of Cr and Ni on the Temperature Dependence of Deformation Behavior and Shape Memory Effects in Fe-Mn-Si Alloys

  • L. J. Rong
  • Y. Y. Li
  • H. M. Cheng
  • C. X. Shi
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Effects of Cr and Ni on the tensile deformation behavior and shape memory effect (SME) in Fe-Mn-Si shape memory alloys have been investigated over the temperature range of 293-77 K. It was found that the increase of stacking fault energy (SFE) in Fe-Mn-Si alloys by additions of Cr and Ni can result in a decreased temperature dependence of work hardening, which is determined by thermal-induced martensite, intersection of e-plates with stacking faults, and difficult cross slip of dislocations in low SFE alloys. Moreover, the increase of c/a ratio for martensite in Cr and Ni bearing alloys can reduce the interfacial energy and shear deformation required for the formation of fcc twins and facilitate their formation. As a result, the penetration process of ɛ-plates on different {111} planes can be avoided through the formation of e-martensite in fcc twins, and the SME is improved.

Keywords

Shape Memory Shape Memory Alloy Stack Fault Energy Shape Memory Effect Experimental Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Otsuka, H. Yamada, H. Tanahashi and T. Maruyama, Mater. Sci. For., 56–58:655 (1990).Google Scholar
  2. 2.
    H. Otsuka, H. Yamada, T. Mayuyama, H. Tanahashi, S. Matsuda and M. Murakami, ISIJ Intern., 30:674 (1990).CrossRefGoogle Scholar
  3. 3.
    Q. Gu, J. Van Humbeeck and L. Delaey, Scripta Met et Mat., 30:1587 (1994).CrossRefGoogle Scholar
  4. 4.
    M. M. Reyhani and P. G. McCormick, Scripte Met et Mat., 31:875 (1994).CrossRefGoogle Scholar
  5. 5.
    M. M. Reyhani and P. G. McCormick, Mater. Sci. Eng., A160:57 (1993).CrossRefGoogle Scholar
  6. 6.
    H. Inagaki, Z. Metallkd, 80:90 (1992).Google Scholar
  7. 7.
    L. J. Rong, Y. Y. Li and C. X. Shi, J. Mater. Sci. Technol. Sin., 11:304 (1995).Google Scholar
  8. 8.
    Donald Peekner and I.M. Bernstein, Handbook of Stainless Steels (in Chinese), S. R. Gu and Y. G. Zhou ed., Mechanical Industry Press, Beijing (1987), P122.Google Scholar
  9. 9.
    A. Sato, K. Soma, T. Mori, Acta Metall., 30:1901 (1982).CrossRefGoogle Scholar
  10. 10.
    J. H. Yang, H. Chen and C. M. Wayman, Met. Trans., 23A:1431 (1992).CrossRefGoogle Scholar
  11. 10a.
    H. Ohtsuka and S. Kajiwara, Met. Trans., 25A:63 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • L. J. Rong
    • 1
  • Y. Y. Li
    • 1
  • H. M. Cheng
    • 1
  • C. X. Shi
    • 1
  1. 1.Institute of Metal ResearchAcademia SinicaShenyangP. R. China

Personalised recommendations