Tensile Strain / Transverse Compressive Stress Effects in Nb3Sn Multifilamentary Wires with CuNb Reinforcing Stabilizer

  • K. Katagiri
  • K. Watanabe
  • H. S. Shin
  • Y. Shoji
  • N. Ebisawa
  • K. Noto
  • T. Okada
  • K. Goto
  • T. Saito
  • O. Kono
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


In order to improve the strain/stress characteristics of the critical current Ic, the use of external CuNb reinforcing stabilizer, instead of the conventional Cu stabilizer, with bronze processed Nb3Sn multifilamentary superconducting wires was examined up to the magnetic field of 14T and at a temperature of 4.2K. Although the axial tensile strain sensitivity of Ic was not changed, the strain for peak Ic as well as the reversible strain limit increased by 0.14% when the Cu stabilizer was replaced by the CuNb reinforcing stabilizer. On the other hand, the transverse compressive stress sensitivity of Ic decreased and the reversible stress limit increased. An increase in both a bronze to Nb ratio and Sn content in bronze matrix resulted in a higher stress tolerance and, as a consequence, the contribution of the CuNb reinforcement became relatively small.


Axial Tensile Proof Stress Superconducting Wire Block Width Intrinsic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Ekin, R. Flukiger, and W. Specking, J. Appl. Phys., 54:2869 (1983).CrossRefGoogle Scholar
  2. 2.
    R. Flukiger, E. Drost, and W. Specking, Adv. Cryog. Eng., 30:875 (1984).CrossRefGoogle Scholar
  3. 3.
    K. Noto, N. Konishi, K. Watanabe, A. Nagata, and T. Anayama, in “Proc. Int. Symp. Flux Pin. Electromagn. Prop. Superconds.”, Eds. T. Matsushita, K. Yamafuji, and F. Irie, Matsukuma Press, Fukuoka(1985), p.272.Google Scholar
  4. 4.
    R. Flukiger, and A. Nyilas, IEEE Trans. Magn., MAG-21:285 (1985).CrossRefGoogle Scholar
  5. 5.
    S. Nakayama, S. Murase, K. Shimamura, N. Aoki, and N. Shiga, Adv. Cryog. Eng., 38:279 (1992).Google Scholar
  6. 6.
    M. Matsukawa, K. Noto, C. Takahashi, Y. Saito, N. Matsuura, K. Katagiri, M. Ikebe, T. Fukutsuka, and K. Watanabe, IEEE Trans. Magn., 28:880 (1992).CrossRefGoogle Scholar
  7. 7.
    E. Gregory, L.R. Motowidlo, G.M. Ozeryansky, and L.T. Summers, IEEE Trans. Magn., MAG-27:2033 (1991).CrossRefGoogle Scholar
  8. 8.
    C.C. Tsuei, J. Appl. Phys., 45:1385 (1974).CrossRefGoogle Scholar
  9. 9.
    J. Bevk, J.P. Harbison, and J.L. Bell, J. Appl. Phys., 49:6031 (1978).CrossRefGoogle Scholar
  10. 10.
    C.V. Renaud, E. Gregory, and J. Wong, Adv. Cryog. Eng., 32:443 (1986).CrossRefGoogle Scholar
  11. 11.
    K. Watanabe, S. Awaji, K. Katagiri, K. Noto, K. Goto, M. Sugimoto, T. Saito, and O. Kono, IEEE Trans. Magn., 30:1871 (1993).CrossRefGoogle Scholar
  12. 12.
    K. Katagiri, K. Watanabe, K. Noto, K. Goto, T. Saito, O. Kono, A. Iwamoto, M. Nunogaki, and T. Okada, Cryogenics, 34:1039 (1994).CrossRefGoogle Scholar
  13. 13.
    K. Katagiri, M. Fukumoto, K. Saito, M. Ohgami, T. Okada, A. Nagata, K. Noto, and K. Watanabe, Adv. Cryog. Eng., 36:69 (1990).CrossRefGoogle Scholar
  14. 14.
    K. Kamata, K. Katagiri, T. Okada, T. Takeuchi, K. Inoue, K. Watanabe, Y. Muto, T. Ogata, and T. Tsuji, in “Proc. 11th Int. Conf. Magnet Tech.” Eds. T. Sekiguchi, and S. Shimamoto, Elsevier Appl. Sci., London (1989), p. 1231.Google Scholar
  15. 15.
    J.W. Ekin, Cryogenics, 611 (1980).Google Scholar
  16. 16.
    J.W. Ekin, J. Appl. Phys., 62:4829 (1987).CrossRefGoogle Scholar
  17. 17.
    W. Specking, W. Goldacker, and R. Flukiger, Adv. Cryog. Eng., 34:569 (1988).Google Scholar
  18. 18.
    T. Kuroda, H. Wada, S.L. Bray, and J.W. Ekin, Fusion Eng. and Design, 20:271 (1993).CrossRefGoogle Scholar
  19. 19.
    J.W. Ekin, Adv. Cryog. Eng., 30:823 (1984).CrossRefGoogle Scholar
  20. 20.
    B. ten Haken, A. Godake and H.H.J. ten Kate, Adv. Cryog. Eng., 40:875 (1994).Google Scholar
  21. 21.
    H. Boschman, A.P. Verweij, S. Wessel, H.H.J. ten Kate, and L.J.M. van de Klundert, IEEE Trans., MAG-27:1831 (1991).Google Scholar
  22. 22.
    S.L. Bray and J.W. Ekin, Adv. Cryog. Eng., 38:643 (1992).Google Scholar
  23. 23.
    23.H. Boschman and L.J.M. van de Klundert, Adv. Cryog. Eng., 36:93 (1990).CrossRefGoogle Scholar
  24. 24.
    K. Katagiri, T. Kuroda, H. Wada, H.S. Shin, K. Watanabe, K. Noto, Y. Syoji, and H. Seto, IEEE Trans. Applied Superconductivity, 5:1900 (1995).CrossRefGoogle Scholar
  25. 25.
    F.J. Bussiere, B. Faucher, C.L. Snead Jr., and M. Suenaga, Adv. Cryog. Eng., 28:453 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • K. Katagiri
    • 1
  • K. Watanabe
    • 2
  • H. S. Shin
    • 3
  • Y. Shoji
    • 1
  • N. Ebisawa
    • 1
  • K. Noto
    • 1
  • T. Okada
    • 4
  • K. Goto
    • 5
  • T. Saito
    • 5
  • O. Kono
    • 5
  1. 1.Faculty of Eng.Iwate UniversityMorioka, 020Japan
  2. 2.Inst. Mater. Res.Tohoku UniversitySendai, 980Japan
  3. 3.Dept. of Mech. Eng.Andong National UniversityAndongKorea
  4. 4.Inst. Sci. Ind. Res.Osaka UniversityIbaraki, 567Japan
  5. 5.Mater. Res. Lab.Fujikura Ltd.Tokyo, 135Japan

Personalised recommendations