Applicability of a Pitch Carbon FRP Thermal Shield Under Neutron Irradiation — a Theoretical Estimate

  • B. M. S. Rugaiganisa
  • S. Nishijima
  • T. Okada
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


The applicability of pitch-type carbon for thermal shielding in fusion devices was studied by estimating the degradation of its a-axis thermal conductivity on neutron irradiation at cryogenic temperatures. This was done by the use of, in part, the experimental data on unirradiated pitch carbon FRP specimens from which the pre-irradiation phonon relaxation time parameters were determined. The post-irradiation parameters were estimated by considering Frenkel pair formation due to irradiation with neutrons of an energy spectrum equivalent to that in the moderator of a fission reactor. The effective relaxation time was then determined by using all the parameters and the new thermal conductivity with its temperature dependency was calculated. From this analysis it is estimated that a pitch carbon based thermal shield would maintain a thermal conductivity superior to that of stainless steel for neutron irradiations up to 3×1018n/cm2.


Thermal Conductivity Neutron Irradiation Fusion Device Frenkel Pair Thermal Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.M.W. Leung et al, Adv. in Cryogenic Eng. Vol. 25 (1979) 489Google Scholar
  2. 2.
    T. Okada, B.M.S. Rugaiganisa and S. Nishijima, Cryogenics Vol. 32, ICMC Supplement (1992) 30Google Scholar
  3. 3.
    B.M.S. Rugaiganisa, S. Nishijima, T. Okada, K. Nojimaand K. Asano, Adv. in Cryogenic Eng. (Materials) Vol. 40 (1994) 993Google Scholar
  4. 4.
    B. Dreyfus and R. Maynard, journal de Physique (France) 28 (1967) 955CrossRefGoogle Scholar
  5. 5.
    T. Nihira and T. Iwata, “Point Defects and Defect Interaction in Metals”, University of Tokyo Press, Tokyo (1982), p.236Google Scholar
  6. 6.
    C.A. Klein and M.G. Holland, Physical Review 136 (1964)a575CrossRefGoogle Scholar
  7. 7.
    LB. Mason and R.H. Knibbs, A.E.R.E. 3937Google Scholar
  8. 8.
    J.M. Ziman, “Electrons and Phonons”, Oxford University Press, London (1960), p.257Google Scholar
  9. 9.
    K. Komatsu, J. Phys. Soc. Japan 10 (1955) 346CrossRefGoogle Scholar
  10. 10.
    A. de Combarieu, journal de Physique (Prance) 28 (1967) 951CrossRefGoogle Scholar
  11. 11.
    B.T. Kelly, “Physics of Graphite”, Applied Science Publishers, London (1981) p.222Google Scholar
  12. 12.
    P.A. Carruthers, Rev. Mod. Phys. 33 (1961) 92CrossRefGoogle Scholar
  13. 13.
    K. Komatsu and T. Nagamiya J. Phys. Soc. Japan Vol. 6 No. 6 (1951) 438CrossRefGoogle Scholar
  14. 14.
    C. Herring, Physical Review 95 (1954)954CrossRefGoogle Scholar
  15. 15.
    T. Nihira and T. Iwata, J. Phys. Soc. Japan Vol. 49 No. 5 (1980) 1916CrossRefGoogle Scholar
  16. 16.
    T. Okada et al, “Radiation Effects and Tritium Technology for Fusion Reactors”, CONF-750989, Vol. II (1976) p.436Google Scholar
  17. 17.
    W. Schilling et al, “Proc. of the Int. Conf. on Vacancies and Interstitials in Metals”, Zurich (1968) p.255Google Scholar
  18. 18.
    G.M. McCracken and S. Blow, The shielding of superconducting magnets in a fusion reactor, CLM-R120 (1972)Google Scholar
  19. 19.
    W. Marshall (editor) “Reactor Technology”, Oxford University Press, 1983Google Scholar
  20. 20.
    S. Igarashi et al, “Japanese Evaluated Nuclear Data Library, Version 1 (JENDL-1)”, JAERI 1261 (1979)Google Scholar
  21. 21.
    B.T Kelly, “Irradiation Damage to Solids”, Pergamon Press, N.Y. (1966) p.13Google Scholar
  22. 22.
    T. Iwata and T. Nihira, J. Phys. Soc. Japan Vol. 31 No. 6 (1971) 1761CrossRefGoogle Scholar
  23. 23.
    S. Satoh et al, Fusion Engineering Design vol. 20 (1993) 129CrossRefGoogle Scholar
  24. 24.
    W. Maurer, “Neutron Irradiation Effects on Superconducting and Stabilizing Materials for Fusion Magnets, KfK 3733”, Kernforschungszentrum Karlsruhe Gmbh, (1984) p.11Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • B. M. S. Rugaiganisa
    • 1
  • S. Nishijima
    • 1
  • T. Okada
    • 1
  1. 1.ISIROsaka UniversityIbaraki City, Osaka 567Japan

Personalised recommendations