Multilayer Nb-Ti for Use as Model Superconducting Microstructures

  • W. H. Warnes
  • K. J. Faase
  • J. A. Norris
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


Thin film deposition techniques provide opportunities to control the microstructure of two-phase alloy superconductors more completely than that possible by conventional metallurgical processing. We have fabricated thin film multilayer structures based on Nb-Ti alloy superconductors. The goal is to provide model microstructures that can be easily compared to flux-pinning theories of high-critical-current superconductivity. In this study, multilayer Nb/Ti materials have been annealed to provide samples with a variety of superconducting / normal interfaces, ranging from atomically sharp interfaces to heavily inter-diffused interfaces. Measurements of electrical and microstructural properties are described and compared with model predictions from proximity coupling theory and alloy diffusion.


Critical Magnetic Field Residual Resistivity Ratio Bilayer Period Normal State Property Thin Film Deposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Wall, Microscopy Research and Technique, 27: 262 (1994).CrossRefGoogle Scholar
  2. 2.
    C. C. Koch, J. O. Scarbrough, D. M. Krocger, Phys Rev B, 9: 888 (1974).CrossRefGoogle Scholar
  3. 3.
    L. R. Testardi, J. M. Poatc, H. J. Levinstein, Phys Rev B, 15(5): 2570 (1976).CrossRefGoogle Scholar
  4. 4.
    J. C. Villegier, J. C. Veler, IEEE Trans Mag, 19(3): 946 (1983).CrossRefGoogle Scholar
  5. 5.
    Y. J. Qian, J. Q. Zheng, B. K. Sarma, H. Q. Yang, J. B. Ketterson, and J. H. Hilliard, J Low Temp Phys, 49(3): 279 (1982).CrossRefGoogle Scholar
  6. 6.
    N. Sato, J Appl Phys, 67: 7493 (1990).CrossRefGoogle Scholar
  7. 7.
    Y. Obi, M. Ikebe, Y. Muto, H. Fujimori, Jap J Appl Phys, 26(3)4445 (1987).Google Scholar
  8. 8.
    C. Meingast, P. J. Lee, D. C. Larbalestier, J Appl Phys, 66: 5962 (1989).CrossRefGoogle Scholar
  9. 9.
    M. Ledvij, L. Dobrosavljevic-Grujic, and J. R. Clem, Phys Rev B, 38(1): 129 (1988).CrossRefGoogle Scholar
  10. 10.
    G. B. Gibbs, D. Graham, D. H. Tomlin, Phil Mag, 8: 1269 (1963).CrossRefGoogle Scholar
  11. 11.
    J. A. Norris, “Properties of a Niobium-Titanium Multilayer Thin Film”, M.S. Thesis, Oregon State University, Corvallis, OR (1995).Google Scholar
  12. 12.
    J. Q. Zheng, J. B. Ketterson, C. M. Falco, I. K. Schuller, Physica, 108(B): 945 (1981).CrossRefGoogle Scholar
  13. 13.
    Z. Fisk, A. C. Lavvson, Sol State Comm, 13: 277 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • W. H. Warnes
    • 1
  • K. J. Faase
    • 1
  • J. A. Norris
    • 1
  1. 1.Dept. of Mechanical EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations