Advertisement

Effect of Proximity Length on Flux Pinning in APC Composites: An Overview of APC

  • Lance D. Cooley
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

The lack of adequate high-field pinning in APC composites is an intrinsic property of a dominant magnetic pinning mechanism and the long proximity length of Nb pins. Recent work on APC composites has uncovered trends in the flux-pinning and microstructural data, which hold despite the variety of their designs. By comparing these trends to those of conventional Nb-Ti composites, evidence for magnetic pinning being the dominant flux-pinning mechanism is found. This model departs from the widely accepted view that core-pinning is the dominant pinning mechanism. The parameter that controls the optimization of flux-pinning in the microstructure is the proximity length ξ n instead of the diameter of the fluxon core. The optimum bulk pinning force occurs for the best balance of a strong elementary pinning force f p and a high number density of pins. However, since f p is maximum when the pin thickness tξ n , the number density of pins can be made to be on the order of the fluxon number density by using artificial pins which have very short proximity lengths. Such pins are most desirable to achieve high J c at high fields.

Keywords

High Field United States Patent Filament Diameter High Number Density Conventional Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Matsumoto et al., Appl. Phys. Lett. 64: 115 (1994).CrossRefGoogle Scholar
  2. 2.
    L. R. Motowidlo, B. A. Zeitlin, M. S. Walker, and P. Haldar, Appl. Phys. Lett. 61: 991 (1992).CrossRefGoogle Scholar
  3. 3.
    L. R. Motowidlo, H. C. Kanithi, and B. A. Zeitlin, Adv. Cryogenic Eng. (Materials) 36A: 331 (1990)Google Scholar
  4. 4.
    L. D. Cooley and D. C. Larbalestier, IEEE Trans. Magn. 27: 1120 (1991).CrossRefGoogle Scholar
  5. 5.
    O. Miura et al., Cryogenics 32: 315 (1992).CrossRefGoogle Scholar
  6. 6.
    K. Matsumoto et al., IEEE Trans. Appl. Supercond. 3: 1362 (1993).CrossRefGoogle Scholar
  7. 7.
    L. D. Cooley, P. J. Lee, and D. C. Larbalestier, “Evidence that magnetic pinning is the dominant pinning mechanism in Nb-Ti superconductors and the effect that proximity coupling of the pins to the matrix has on the pinning force”, Phys. Rev. B, submitted.Google Scholar
  8. 8.
    C. Meingast, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 66: 5962 (1989).CrossRefGoogle Scholar
  9. 9.
    C. Meingast and D. C. Larbalestier, J. Appl. Phys. 66: 5971 (1989).CrossRefGoogle Scholar
  10. 10.
    J. M. Seuntjens, Supercon Inc., Shrewsbury Mass., private communication.Google Scholar
  11. 11.
    J. Wong, United States Patent, No. 5, 230, 748 (Jul. 27, 1993); J. Wong and M. K. Rudziak, United States Patent, Nos. 5, 160, 550 (Nov. 3, 1992) and 5, 223, 348 (Jun. 29, 1993); J. Wong, M. K. Rudziak, and D. W. Capone II, United States Patent, Nos. 5, 158, 620 (Oct. 27, 1992) and 5, 160, 794 (Nov. 3, 1992).Google Scholar
  12. 12.
    K. Matsumoto, Y. Tanaka, K. Yamada, and O. Miura, United States Patent, No. 5, 374, 320 (Dec. 20, 1994).Google Scholar
  13. 13.
    B. A. Zeitlin, M. S. Walker, and L. R. Motowidlo, United States Patent, No. 4, 803, 310 (Feb. 7, 1989).Google Scholar
  14. 14.
    R. W. Heussner, P. D. Jablonski, P. J. Lee, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 5: (to appear 1995).Google Scholar
  15. 15.
    J. Q. Wang, N. D. Rizzo, J. D. McCambridge, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, paper WE-Z1–7 this conference; J. Q. Wang, N. D. Rizzo, and J. D. McCambridge, Yale University, private communications.Google Scholar
  16. 16.
    L. D. Cooley, P. D. Jablonski, R. W. Heussner, and D. C. Larbalestier, paper TU-PM2–10 this conference.Google Scholar
  17. 17.
    P. D. Jablonski, P. J. Lee, and D. C. Larbalestier, Appl. Phys. Lett. 65: 767 (1994).CrossRefGoogle Scholar
  18. 18.
    P. D. Jablonski, P. J. Lee, and D. C. Larbalestier, MRS Symposium 351: 455 (1994).CrossRefGoogle Scholar
  19. 19.
    P. D. Jablonski and D. C. Larbalestier, United States Patent, No. 5, 226, 947 (July 13, 1993).Google Scholar
  20. 20.
    G. L. Dorofejev et al., in “9th International Conference on Magnet Technology”, C. Marinucci and P. Weymuth eds. (Swiss Institute for Nuclear Research, Villigen, Switzerland, 1983), p. 564.Google Scholar
  21. 21.
    L. D. Cooley, P. J. Lee, D. C. Larbalestier, and P. M. O’Larey, Appl. Phys. Lett. 64: 1298 (1994).CrossRefGoogle Scholar
  22. 22.
    J. C. McKinnell, P. J. Lee, and D. C. Larblaestier, Adv. Cryogenic Eng. (Materials) 34: 1001 (1988).Google Scholar
  23. 23.
    J. C. McKinnell, Ph.D. thesis, University of Wisconsin-Madison (1990).Google Scholar
  24. 24.
    D. C. Larbalestier, University of Wisconsin-Madison, private communication.Google Scholar
  25. 25.
    G. Stejic et al., Supercond. Sci. Technol. 5(1S): 176 (1992).CrossRefGoogle Scholar
  26. 26.
    D. Dietdereich, Lawrence Berkeley Laboratory, private communication.Google Scholar
  27. 27.
    A. W. West and D. C. Larbalestier, IEEE Trans. Magn. 19: 548 (1983).CrossRefGoogle Scholar
  28. 28.
    D. C. Larbalestier and A. W. West, Acta Metall. 32: 1871 (1984).CrossRefGoogle Scholar
  29. 29.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21: 169 (1972)Google Scholar
  30. 30.
    C. Li and D. C. Larbalestier, Cryogenics 27: 171 (1987).CrossRefGoogle Scholar
  31. 31.
    D. C. Larbalestier, in “Superconductor Materials Science”, S. Foner and B. Schwartz eds., Plenum, New York (1981), p. 177.Google Scholar
  32. 32.
    A. Gurevich and L. D. Cooley, Phys. Rev. B 50: 13563 (1994).CrossRefGoogle Scholar
  33. 33.
    P. DeGennes, “Superconductivity of Metals and Alloys”, Addison Wesley, New York (1989).Google Scholar
  34. 34.
    E. W. Collings, Adv. Cryogenic Eng. (Materials) 34: 867 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Lance D. Cooley
    • 1
  1. 1.Electromagnetic Technology DivisionNISTBoulderUSA

Personalised recommendations