Superconducting Electric Power Applications

  • R. D. Blaugher
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

The application of superconductors to electric power systems has been actively pursued over the past 30 years. Following the realization of high-field, high-current superconductors in 1961, researchers applied these type II materials, such as Nb-Ti and Nb3Sn, to laboratory magnets, followed by generators, motors, and transmission cables. Successful prototypes for the latter were constructed and tested by the mid-1980s. It is fair to assume that widespread utility acceptance of these low-temperature superconducting (LTS) power applications was compromised by the necessity for liquid helium cooling. The discovery of the high-temperature superconductors (HTS) in 1986, which offered the prospect for liquid nitrogen cooling, provided renewed interest and impetus and spurred the development of HTS power components. The expectations for HTS power components are, in fact, near realization, as a result of the rapid worldwide progress in HTS wire and tape development. This paper will review the history and present status of superconducting power-system-related applications. The major problems facing this technology and the prospects for commercialization and eventual integration into the utility sector will be discussed. General acceptance for superconducting power equipment by the electric utilities and other end-users will ultimately be based on the respective system performance, efficiency, reliability and maintenance, operational lifetime, and installed cost compared to conventional technologies.

Keywords

Vortex Mercury Europe Steam Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mendelssohn, “The Quest for Absolute Zero” Taylor and Francis Ltd., London, 1977Google Scholar
  2. 2.
    R. deBruyn Oubuter, IEEE Trans on Magnetics, Mag 23 (1987) 355CrossRefGoogle Scholar
  3. 3.
    W.H. deHaas and J. Voogd, Commun. Phys. Lab. Leiden #214b (1931)Google Scholar
  4. 4.
    J.N. Rjabinin and L.W. Schubinikov, Physik. Z. Sowjetunion 7, 122 (1935);Google Scholar
  5. 4a.
    J.N. Rjabinin and L.W. Schubinikov, Nature, London 135,581 (1935)CrossRefGoogle Scholar
  6. 5.
    A.B. Pippard, Proc. Roy. Soc. (London). Vol A216, (1953) pp. 547–568Google Scholar
  7. 6.
    A.A. Abrikosov, Doklady Akad. Nauk S.S.S.R. 86 (1952) 498;Google Scholar
  8. 6a.
    A.A. Abrikosov, Sov. Phys. JETP Vol. 5, (1957), p. 1174Google Scholar
  9. 7.
    V.L. Ginsburg and L.D. Landau, J. Exptl. Theoret. Phys. (USSR) 20, 1064 (1950)Google Scholar
  10. 8.
    W.C.H. Joiner and R.D. Blaugher, Rev. Mod. Phys. 36, (1964) 67CrossRefGoogle Scholar
  11. 9.
    B.B. Goodman, Phys. Abstr., 252, (1964) 5175Google Scholar
  12. 10.
    A.M. Campbell, IEEE Trans on Magnetics, 27 (1991) 1660CrossRefGoogle Scholar
  13. 11.
    K.S. Lichtenberger, S.C. Sanders and D.K. Finnemore, IEEE Trans on Magnetics, 27, (1991) 1387CrossRefGoogle Scholar
  14. 12.
    Ted G. Berlincourt, IEEE Trans on Magnetics, Mag 23 (1987) 403CrossRefGoogle Scholar
  15. 13.
    G. B. Yntema, Phys. Rev., 98, (1955), p.1197;Google Scholar
  16. 13a.
    G. B. Yntema, IEEE Trans on Magnetics, Mag 23 (1987)390CrossRefGoogle Scholar
  17. 14.
    J.E. Kunzler, E. Buehler, F.S.L. Hsu and J.H. Wernick, Phys. Rev Lett., 6, (1961), p. 89CrossRefGoogle Scholar
  18. 15.
    J.E. Kunzler, IEEE Trans on Magnetics, Mag 23 (1987) 396CrossRefGoogle Scholar
  19. 16.
    J. K. Hulm and R.D. Blaugher, Phys. Rev., 123, (1961) p. 1569CrossRefGoogle Scholar
  20. 17.
    J.L.Smith, Jr., J.L. Kirtley, Jr., and P. Thullen, IEEE Trans on Magnetics, MAG11,Google Scholar
  21. 18.
    H. Fujino, IEEE Trans on Magnetics, MAG19, (1983), p. 533CrossRefGoogle Scholar
  22. 19.
    J.L. Smith, Jr., IEEE Trans on Magnetics, MAG19, (1983), p. 522CrossRefGoogle Scholar
  23. 20.
    T.E. Laskaris and K.F. Schoch, IEEE Trans, on Power Apparatus and Systems, PAS-99 (1980) p.2031CrossRefGoogle Scholar
  24. 21.
    I.A. Glebov and V.N. Shaktarin, IEEE Trans on Magnetics, MAG19, (1983), p. 541CrossRefGoogle Scholar
  25. 22.
    A.D. Appleton, IEEE Trans on Magnetics, MAG11, (1975), p. 633CrossRefGoogle Scholar
  26. 23.
    E.B. Forsyth and G.H. Morgan, IEEE Trans on Magnetics, MAG19, (1983), p. 652CrossRefGoogle Scholar
  27. 24.
    J.D. Rogers, HJ. Boenig, R.T. Schermer, and J.F. Hauer, IEEE Trans on Magnetics, MAG21, (1985), p. 752CrossRefGoogle Scholar
  28. 25.
    B.P. Raju and T.C. Bertram, IEE Proc., 129, (1982) 166Google Scholar
  29. 26.
    K. Funaki, M. Iwakuma and K. Yamafugi, Proc. ICEC 12, Southhampton, England, (1988)Google Scholar
  30. 27.
    S.T. Wang, L. Genes, J. Gonczy, H. Ludwig, M. Lieberg, E. Kraft, D. Gacek, Y.C. Huang and C.J. Chen, IEEE Trans on Magnetics, MAG17, (1981), p. 529CrossRefGoogle Scholar
  31. 28.
    V.J. Vickers, Proc. IEE, 121 (1974) 1273Google Scholar
  32. 29.
    A.E. Fitzgerald, C. Kingsley, Jr., and S.D. Umans, “Electric Machinery” McGraw-HillGoogle Scholar
  33. 30.
    C.J. Mole, H.E. Haller III, and D.C. Litz, Appl. Super. Conf. (1972) 151Google Scholar
  34. 31.
    Z.J.J. Stekly and H.H. Woodson, IEEE Trans on Aerospace, 2, (1964) 826CrossRefGoogle Scholar
  35. 32.
    H.H. Woodson, Z.J.J. Stekly, and E. Halas, IEEE Trans Power Apparatus & Systems, PAS-85, No. 3, March 1966 pp. 264–274CrossRefGoogle Scholar
  36. 33.
    Z.J.J. Stekly, H.H. Woodson, A.M. Hatch, L.O. Hoppie, and E. Halas, IEEE Trans, Power Apparatus & Systems, PAS-85, No. 3, March 1966 pp. 274–280CrossRefGoogle Scholar
  37. 34.
    C.J. Oberhauser and H.R. Kinner, Adv. Cryogenic Eng., 13, (1968)Google Scholar
  38. 35.
    P. Thullen, J.C. Dudley, S.L. Greene, J.L. Smith, Jr., and H.H. Woodson, IEEE Trans. Power Apparatur and Systems, PAS-90, (1971) 611CrossRefGoogle Scholar
  39. 36.
    J.S. Edmonds, IEEE Trans on Magnetics, MAG15, (1979), p. 673CrossRefGoogle Scholar
  40. 37.
    R.D. Blaugher, T.J. Fagan, J.H. Parker, Jr. J. Wells, and J.L. McCabria, Proc. ICEC, Kyoto, Japan, May 1974;Google Scholar
  41. 37a.
    J.H. Parker, Jr., R.D. Blaugher, A. Patterson, P.D. Vecchio and J.L. McCabria, IEEE Trans on Magnetics, MAG11, (1975), p.640CrossRefGoogle Scholar
  42. 38.
    P.W. Eckels, private communicationGoogle Scholar
  43. 39.
    C. Flick, W.R. McCown, and J.H. Parker, IEEE Trans on Magnetics, MAG17, (1981), p. 873CrossRefGoogle Scholar
  44. 40.
    P.W. Eckels and J.L. Smith, Jr. Cryogenics, 29, (1989) 651CrossRefGoogle Scholar
  45. 41.
    T. Ogawa, ISTEC Jour., 5, (1992) 38Google Scholar
  46. 42.
    J.L. Kirtley, Jr., J.S. Edmonds, and R.K. Jurgen, IEEE Spectrum, January 1987, 17Google Scholar
  47. 43.
    R. Hawsey and J. Daley, Jour. of Metals, 47, (1995) 56Google Scholar
  48. 44.
    E.W. Collings, Cryogenics, 28, (1988), 724CrossRefGoogle Scholar
  49. 45.
    J.W. Lue, M.S. Lubell, D. Atzed, J.M. Campbell, and R.E.Schwall, Cryogenics (1995) to be publishedGoogle Scholar
  50. 46.
    J.D. Scudiere, D.M. Buczek, P. Miles, P. Roberts, D. Parker, P. Metra, M. Rahman, and D.W. Von Dollen, Adv. Cryogenic Eng. 42, to be published (1996)Google Scholar
  51. 47.
    E.M.W. Leung, G.W. Gilbert, M. Dew, P. Gurrola, K. Muehleman, B. Gamble, C. Russo, G. Dishaw, H. Boenig, D. Peterson, and A. Rodriquez, Adv. Cryogenic Eng., 42, to be published (1996)Google Scholar
  52. 48.
    J.W. Bray, Proc. of TMS Las Vegas Meeting, (1995) to be published in J. Electronic Mat.Google Scholar
  53. 49.
    J. Wegrzyn, R. Thomas, M. Kroon, and T. Lee, Superconductivity and Applications, Edited by H.S. Kwok et al. Plenum Press, New York, (1990) 795; J. Wegrzyn, Superconductivity Applications Assessment, prepared for Empire State Electric Energy Research Corp., Final Report (1989)CrossRefGoogle Scholar
  54. 50.
    R.F. Schiferl, B.X. Zhang, D.I. Driscoll, B.A. Shoykhet, and R.C. Dykhuizen, Adv. Cryogenic Eng., 42, to be published (1996)Google Scholar
  55. 51.
    S. Adelman and R.D. Blaugher, “Assessment of Energy Benefits and Market Potential for Superconducting Technology for Electric Power”, to be published.Google Scholar
  56. 52.
    International Superconductivity Industry Summit (ISIS), Kobe, Japan (1993) and Council on Superconductivity for American Competitiveness (CSAC)Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. D. Blaugher
    • 1
  1. 1.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations