Pt Buffer Layer for Protecting YBCO from Al at Annealing Temperatures up to 450°C

  • S. C. Sanders
  • J. W. Ekin
  • B. Jeanneret
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)


We have studied the effectiveness of different buffer layers to protect YBa2Cu3O7-δ (YBCO) from aluminum when annealing at temperature up to 450°C. Since Al is commonly used to form ohmic contacts to Si, these results have implications for potential hybrid superconductor-semiconductor applications. Buffer layers of Ag, Au, Au/Ag, Au/Cr, Au/Pt, and Pt were examined. The critical temperature Tc of the contacted YBCO layer was measured before and after anneals at 300–450°C in 1 atmosphere of O2. Pt and Au/Pt were effective at preventing significant Al diffusion into YBCO and subsequent Tc degradation. The critical current density Jc could also be maintained when these buffer layers were employed.


Critical Temperature Buffer Layer Ohmic Contact Critical Current Density Contact Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Harvey, J. Moreland, B. Jeanneret, R. H. Ono, and D. A. Rudman, Appl. Phys. Lett. 61, 2225(1992).CrossRefGoogle Scholar
  2. 2.
    M. J. Burns, K. Char, B. F. Cole, W. S. Ruby, and S. A. Sachtjen, Appl. Phys. Lett. 62, 1436 (1993).Google Scholar
  3. 3.
    J. W. Ekin, T. M. Larson, N. F. Bergren, A. J. Nelson, A. B. Swartzlander, L. L. Kazmerski, A. J. Panson, and B. A. Blankenship, Appl. Phys. Lett. 52, 1819 (1988).CrossRefGoogle Scholar
  4. 4.
    S. P. Murarka, Metallization, in: “VLSI Technology,” 2nd Edition, S. M. Sze, ed., McGraw-Hill, New York, (1988).Google Scholar
  5. 5.
    S. S. Cohen and G. S. Gildenblat, “Metal-Semiconductor Contacts and Devices” vol. 13 in VLSI Electronics Microstructure Science, Academic Press (1986).Google Scholar
  6. 6.
    T. J. Richardson and L. C. DeJonhge, Appl. Phys. Lett. 53, 2342 (1988);CrossRefGoogle Scholar
  7. 6a.
    T. Siegrist et al, Phys. Rev B 36, 8365(1987).CrossRefGoogle Scholar
  8. 7.
    S. E. Russek, S. C. Sanders, A. Roshko, and J. W. Ekin, Appl. Phys. Lett. 64, 3649 (1994).CrossRefGoogle Scholar
  9. 8.
    D.-Y. Shih and P. J. Ficabora, IEEE Tram. Electron Devices, ED-26, 27 (1979).CrossRefGoogle Scholar
  10. 9.
    Q. X. Jia, K. L. Jiao, and W. A. Anderson, J. Appl. Phys. 70, 3364 (1991).CrossRefGoogle Scholar
  11. 10.
    M. J. Burns, P. R. de la Houssaye, S. D. Russell, G. A. Garcia, S. R. Clayton, W. S. Ruby, and L. P. Lee, Appl. Phys. Lett. 63, 1282 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. C. Sanders
    • 1
  • J. W. Ekin
    • 1
  • B. Jeanneret
    • 2
  1. 1.Electromagnetic Technology DivisionNational Institute of Standards and TechnologyBoulderUSA
  2. 2.Physics DepartmentUniversity of NeuchatelNeuchatelSwitzerland

Personalised recommendations