Advertisement

High Tensile Bi-2223 Ag-MgO Sheathed Oxide Superconductor

  • Y. Yamada
  • H. Onoda
  • K. Yamamoto
  • S. Murase
  • O. Horigami
  • T. Koizumi
  • T. Hasegawa
  • H. Kumakura
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Ag-Mg(Ni)O sheathed mono-core and multifilamentary tapes have been fabricated to improve the mechanical property of powder-in-tube method (Bi,Pb)2Sr2Ca2Cu3Ox, Bi-2223, conductor. Fine Mg(Ni)0 precipitates in the sheath increased the 0.2% yield strength of the conductor up to 190MPa, which is comparable to the commercial Nb3Sn conductor. The Ag-MgNiO sheathed multifilamentary conductor exhibited a good strain tolerance: critical current density, Jc, did not decreased much up to 0.2% of bending strain and retained 80% of the zero strain Jc value at 0.5% of bending strain. The dependence of Jc on magnetic field was measured at 4.2K. The Ag-MgO sheathed mono-core tape made by pressing showed Jc value of 105 A/cm2 at 4.2K and 13T. The Ag-MgNiO sheathed multifilamentary tape made by rolling exhibited Jc of 2.6×104 A/cm2 at 4.2K and 12T. The present results of high yield strength, good strain tolerance and high values of Jc are enough to the application to the high field magnet.

Keywords

Critical Current Density High Field Magnet Single Core High Yield Strength Strain Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sato, K. Ohkura, K. Hayashi, M. Ueyama, J. Fujikami and T. Kato, High Held Generation Using Silver-Sheathed BSCCO Conductor, presented at the International Workshop on Advances in High Magnetic Fields, AHMF95, Feb. 20–22, 1995.Google Scholar
  2. 2.
    U. Balachandran, A. N. Iyer, P. Haider, J. G. Hoehn Jr., L. R. Motowidlo and G. Galinski, Recent Issues in Fabrication of HighTc Magnets and Long-Length Multifilamentary Conductors, Applied Superconductivity 2:251 (1994).CrossRefGoogle Scholar
  3. 3.
    D. S. Haston, D. M. Kroeger, W. Specking and C. C. Koch, A Prediction of the Stress State in Nb3Sn Superconducting Composites, J. Appl. Phys. 51:2748 (1980).CrossRefGoogle Scholar
  4. 4.
    G. Ries, Magnet Technology and conductor design with high temperature superconductors, Cryogenics 33:609(1993).CrossRefGoogle Scholar
  5. 5.
    Y. Tanaka, T. Asano, Yanagiya, M., Fukutomi, K. Komori, and H. Maeda, Fabrication and Superconducting Properties of AgCu Alloy-Sheathed BiSrCaCuO Oxide lapes, Jpn J. AppLPhys. 31:L235 (1992).CrossRefGoogle Scholar
  6. 6.
    J. Tenbrink, M. Wilhelm, K. Heine, and H. Krauth, Development of Technical High-Tc Superconductor Wires and Tapes, IEEE Trans. Appl. Superconduct. 3:1123 (1993).CrossRefGoogle Scholar
  7. 7.
    J. Kessler, S. Blüm, U. Wildgruber, and W. Goldacker, High Critical Currents in Bi(2223) Tapes with Ag and Hardened Ag Sheaths, J. Alloys Compounds 195:511 (1993).CrossRefGoogle Scholar
  8. 8.
    Y. Yamada, M. Satou, T. Masegi, S. Nomura, S. Murase, T. Koizumi, and Y Kamisada, Microstructural Effect on Critical Current Density in (Bi,Pb)2Sr2Ca2Cu3Ox Ag Sheathed Tape, in: “Advances in Superconductivity VI,” T. Fujita and Y. Shiohara, ed. , Springer-Verlarg, Tokyo, (1994), p. 609.CrossRefGoogle Scholar
  9. 9.
    Y. Yamada, M. Satou, S. Murase, T. Kitamura, and Y. Kamisada, Microstructure and Superconducting Properties of Ag Sheathed (Bi,Pb)2Sr2Ca2Cu3Ox Tapes, in: “Advances in Superconductivity V,” Y. Bando and H. Y’amauchi, ed. , Springer-Verlag, Tokyo, (1993), p. 717.CrossRefGoogle Scholar
  10. 10.
    A. Otto, L. J. Masur, J. Gannon, E. Podtburg, D. Daly, G. J. Yurek and A. P. Malozemoff, Multifilamentary Bi-2223 Composite lapes Made by a Metallic Precursor Route, IEEE Trans. Appl. Super conduct. , 3:915 (1993).CrossRefGoogle Scholar
  11. 11.
    H. H. J. Ten Kate, B. Ten Haken, A. Godeke, and J. Tenbrink, ‘Hie Influence of Tension and Compression on the Critical Current Density in BSCC02212/Ag Wires and lapes, in: “Critical Currents in Superconductors” H. W. Weber, ed. , World Scientific Publishing, Singapore, 1994, p. 549.Google Scholar
  12. 12.
    Y. Yamada, H. Onoda, M. Satou, K. Yamamoto, O. Horigami, N. Fabre and T. Hasegawa, Ag-MgO Reinforced Matrix Bi-2223 Conductor, presented at the 7th US-Japan Workshop on Superconductors, Kyoto, Japan, March 13–15, 1995.Google Scholar
  13. 13.
    M. Satou, Y. Yamada, S. Murase, T. Kitamura, and Y. Kamisada, Densification Effect on the Microstructure and Critical Current Density in (Bi,Pb)2Sr2Ca2Cu3Ox Ag Sheathed Tape, Appl. Phys. Lett. 10:640 (1994).CrossRefGoogle Scholar
  14. 14.
    J. A. Parrell, S. H. Dorris, and D. C. Larbalestier, The Effect of Sheath Material and Deformation Method on the Oxide Core Density, Filament Uniformity, and Critical Current Density of (Bi,Pb)2Sr2Ca2Cu3Ox Tapes, in:“Advances in Cryogenic Engineering”, R. P. Reed et al. , ed. , Plenum Press, New York, (1994), p. 193.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Y. Yamada
    • 1
  • H. Onoda
    • 1
  • K. Yamamoto
    • 1
  • S. Murase
    • 1
  • O. Horigami
    • 1
  • T. Koizumi
    • 2
  • T. Hasegawa
    • 2
  • H. Kumakura
    • 3
  1. 1.Toshiba R&D CenterKawasaki 210Japan
  2. 2.Showa Electric Wire and Cable Co. Ltd.Kawasaki 210Japan
  3. 3.National Research Institute for MetalsTsukuba, Ibaraki 305Japan

Personalised recommendations