Advertisement

Advances in Fabrication of Mono- and Multifilament Ag-Clad BSCCO Superconductors

  • U. Balachandran
  • A. N. Iyer
  • R. Jammy
  • P. Haldar
  • J. G. HoehnJr.
  • M. Suenaga
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 42)

Abstract

Fabricating long lengths of robust and high-quality conductors is imperative for various applications of high-Tc superconductors. Long lengths of mono- and multifilament Ag-clad Bi-Sr-Ca-Cu-O conductors have been fabricated by the powder-in-tube technique. High values for critical current density (Jc) have been achieved in both short- and long-length conductors. Jc values up to 12,000 A/cm2 have been achieved in an 850-m-long multifilament conductor. Pancake-shaped coils and test magnets fabricated from long-length conductors were characterized at various temperatures and applied magnetic fields. A magnet containing 770 m of high-Tc conductor generated a record high field of ≈ 1 T at 4.2 K in a background field of ≈20 T. In-situ tensile and bending characteristics of both mono- and multifilament conductors have also been studied. Multifilament conductors exhibited better axial strain tolerance (ε ≈1%) than that of monofilament conductor (ε ≈0.2%), while retaining 90% of their initial critical current. An analysis of the results is presented, along with effects of parameters such as thickness, superconductor/Ag ratio, and microstructural details.

Keywords

Critical Current Density Background Field Strain Tolerance Test Magnet Pancake Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K Sato, T. Hikata, H. Mukai, M. Ueyama, N. Shibuta, T. Kato, T. Masuda, M. Nagata, K. Iwata and T. Mitsui, IEEE Trans. Mag. 27:1231 (1991).CrossRefGoogle Scholar
  2. 2.
    R. Flukiger, B. Hensel, A. Jermie, A. Perin and J. C. Grivel, Appl. Supercond. 1:709 (1993).CrossRefGoogle Scholar
  3. 3.
    S. X. Dou and H. K. Liu, Supercond. Sci. Technol. 6:297 (1993).CrossRefGoogle Scholar
  4. 4.
    J. Tenbrink, M. Wilhelm, K. Heine and H. Krauth, IEEE Trans Mag. 27:1239 (1991).CrossRefGoogle Scholar
  5. 5.
    U. Balachandran, A. N. Iyer, J. Y. Huang, R. Jammy, P. Haldar, J. G. Hoehn, Jr., G. Galinski and L. R. Motowidlo, JOM 46:23 (1994).CrossRefGoogle Scholar
  6. 6.
    J. Fujikami, N. Shibuta, K. Sato, H. Ishii and T. Hara, Appl. Supercond. 2:181 (1994).CrossRefGoogle Scholar
  7. 7.
    Q. Li, K. Brodersen, H. A. Hyuler and T. Frefloft, Physica C 217:360 (1993).CrossRefGoogle Scholar
  8. 8.
    D. C. Larbaleister, X. Y. Cai, Y. Feng, H. Edelman, A. Umezawa, G. N. Riley, Jr. and W. L. Carter, Physica C 221:299 (1993).CrossRefGoogle Scholar
  9. 9.
    M. Lelovic, P. Krishnaraj, N. G. Eror and U. Balachandran, Physica C 242:246 (1995).CrossRefGoogle Scholar
  10. 10.
    P. Haldar, J. G. Hoehn, Jr., L. R. Motowidlo, U. Balachandran and Y. Iwasa, Adv. Cryo. Eng. 40:313 (1994).Google Scholar
  11. 11.
    L. R. Motowidlo, E. Gregory, P. Haldar, J. A. Rice, and R. D. Blaugher, Appl. Phys. Lett. 59:736 (1991).CrossRefGoogle Scholar
  12. 12.
    U. Balachandran, A. N. Iyer, P. Haldar, J. G. Hoehn, Jr., L. R. Motowidlo, and G. Galinski, Appl. Supercond. 2:251 (1994).CrossRefGoogle Scholar
  13. 13.
    A. Otto, C. Craven, D. Daly, E. R. Pottburg, J. Schreiber and L. J. Masur, JOM 45:48 (1993).CrossRefGoogle Scholar
  14. 14.
    Q. Li, J. E. Ostenson and D. K. Finnemore, J. Appl. Phys. 70:4392 (1991).CrossRefGoogle Scholar
  15. 15.
    J. Ekin, Materials at Low Temperatures, eds. Reed and Clark, Materials Park, OH: American Society for Metals (1983).Google Scholar
  16. 16.
    S. X. Dou, H. K. Liu, Y. C. Guo, R. Bhasale, Q. Y. Hu, E. Babic, I. Kusevic, Appl. Supercond. 2:191 (1994).CrossRefGoogle Scholar
  17. 17.
    J. W. Ekin, D. K. Finnemore, Qiang Li, J. Tenbrink and W. Carter, Appl. Phys. Lett. 61:858 (1992).CrossRefGoogle Scholar
  18. 18.
    J. P. Singh, J. Joo, N. Vasanthamohan and R. B. Poeppel, J. Mater. Res. 8:2458 (1993).CrossRefGoogle Scholar
  19. 19.
    J. Yau, H. K. Liu, Q. Y. Hu, N. Savvides and S. X. Dou, J. Mater. Syn. Proc. 2:45 (1994).Google Scholar
  20. 20.
    J. Schwartz, J. K. Heuer, K. C. Goretta, R. B. Poeppel, J. Guo and G. W. Raban, Jr., Appl. Supercond. 2:271 (1994).CrossRefGoogle Scholar
  21. 21.
    S. X. Dou, Y. C. Guo, J. Yau and H. K. Liu, Supercond. Sci. Technol. 6:195 (1993).CrossRefGoogle Scholar
  22. 22.
    T. A. Miller, J. E. Ostenson, Q. Li, L. A. Schwartzkopf, D. K. Finnemore, J. Righi, R. A. Gleixner and D. Zeigler, Appl. Phys. Lett. 58:2159 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • U. Balachandran
  • A. N. Iyer
  • R. Jammy
    • 1
  • P. Haldar
  • J. G. HoehnJr.
    • 2
  • M. Suenaga
    • 3
  1. 1.Energy Technology DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Intermagnetics General CorporationLathamUSA
  3. 3.Department of Applied ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations