Transport Critical Current Density Distributions in Ag/Bi-2223 Tapes

  • H. D. Ramsbottom
  • H. Ito
  • T. Horita
  • K. Matsuno
  • K. Osamura
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)


IV characteristics have been studied for monocore Ag sheathed Bi-2223 tapes, fabricated from both sol-gel and mechanically-milled precursor powders. Results have been obtained with the c-axis of the sample both parallel and perpendicular to the applied field, together with the force-free orientation. The angular dependence of the critical current has also been measured. The IV characteristics have been analysed in terms of their n-value and second-differential. The spatial dependence of the critical current has been measured using a scanning Hall probe. The results suggest that the transport current follows a percolative path which is limited by current flow in the c-axis direction, and that most of the current flows in a thin layer of highly aligned Bi-2223 grains near to the Ag sheath. The limiting mechanism in the c-axis direction is thought to be weak-link grain boundaries.


Critical Current Critical Current Density Misorientation Angle Precursor Powder Percolative Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Hensel, J. C. Grivel, A. Jeremic, A. Perin, A. Pollini and R. Flükiger, l’hysica (’ 205 329 (1993).Google Scholar
  2. 2.
    L. N. Bulaevskii, J. R. Clem, L. I. Glazman and A. P. Malozemoff, Phys. Rev. B 45 (5) 2545 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    R. G. Jones, E. H. Rhoderick and A. C. Rose-Innes, Phys. Lett. 24A (6) (1967).Google Scholar
  4. 4.
    L. F. Goodrich, A. N. Srivastava, M. Yuyama and H. Wada, IEEE Trans. App!. Supercond. 3 (1) 1265 (1993).CrossRefGoogle Scholar
  5. 5.
    W. H. Warnes and D. C. Larbalestier, Cryogenics 26 643 (1986).CrossRefGoogle Scholar
  6. 6.
    Y. Masuda, R. Ogawa and Y. Kawate, J. Mater. Res. 7 (2) 1 1992.ADSCrossRefGoogle Scholar
  7. 7.
    A. Tanihata, A. Sakai, M. Matsui, N. Nonaka and K. Osamura, Supercond. Sci. Technol. 9 1055 (1996).ADSGoogle Scholar
  8. 8.
    K. H. Muller, C. Andrikidis, H. K. Liu and S. X. Dou, l’hys. Rev. B 50 (14) 10218 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    P. H. Kes, J. Aarts, V. M. Vinokur and C. J. van der Beek, l’hys. Rev. Lett. 64 (9 1063 (1990).Google Scholar
  10. 10.
    L. Le Lay, C. M. Friend, T. Maruyama, K. Osamura and D. P. Hampshire,.1. Phys.: Condens. Mater 46 10053 (1994).CrossRefGoogle Scholar
  11. 11.
    K. Osamura, S. Nonaka and Y. Katsumura, l’roc. IG’~ IC’EC/ICMC Kitakyushu, Japan, ed T. Haruyama, T. Mitsui and K. Yamafuji 1357 (1996).Google Scholar
  12. 12.
    K. Osamura. S. Nonaka, M. Matsui, T. Oku, S. Ochiai and D. P. Hampshire, J. App!. Phys. 79 (10) 7877 (1996).CrossRefGoogle Scholar
  13. 13.
    M Dhalle, M. Cuthbert, M. D. Johnson, J. Everett, R. Flükiger, S.X. Dou, W. Goldacker, T. Beales and A. D. Caplin, Supercond. Sci. Technol. 10 22 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    A. Crisan, L. Miu, S. Popa and G. Aldica, J Supercond. 9 (5) 539 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    J. R. Cave, H. D. Ramsbottom, D. W. A. Willén, R. Nadi, W. Zhu and A. Paquette, Proc. I6 ICEC/ICMC Kitakyushu, Japan, ed T. Haruyama, T. Mitsui and K. Yamafuji 279 (1996).Google Scholar
  16. 16.
    P. N. Mikheenko, J. Horvat, Q. Y. Hu, M. Ionescu and S. X. Dou, Supercord Sci Technol. 10 444 (1997)Google Scholar
  17. 17.
    B. Hensel, G. Grasso and R. Flükiger, Phys. Rev. B 51 (21) 15456 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    B. Hensel, G. Grasso and R. Flükiger, J. Elect. Materials 24 (12) 1877 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    B. Hensel, G. Grasso, D. P. Grindatta, H. U. Nissen and R. Flükiger, Inst. Phys. Conf. Series EUCAS’95 148 459 (1995).Google Scholar
  20. 20.
    D. Dimos, P. Chaudhari, and J. Mannhart, l’hys. Rev. B 41 4038 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    K. Osamura, H. Ito, T. Horita, S. Nonaka and H. Okuda, Presented at this conference, (1997)Google Scholar
  22. 22.
    L. Wu, Y. Wang, W. Bian, Y. Zhu, T. R. Thurston, R. L. Sabatini, P. Haldar and M. Suenaga, Submitted to J. Mat. Res. (1997).Google Scholar
  23. 23.
    J. Baixeras and G. Fournet, J. Phys. Chem. Solids 28 1541 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    A. Savitsky and M. J. E. Golay, Anal. Chem. 36 1627 (1964).ADSCrossRefGoogle Scholar
  25. 25.
    H. S. Edelman and D. C. Larbalestier, J. App!. Phys. 74 (5) 3312 (1993).CrossRefGoogle Scholar
  26. 26.
    D. C. Larbalestier, X. Y. Cai, Y. Feng, H. Edelman, A. Umezawa, G. N. Riley Jr. and W. L. Carter, Physica C 221 299 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    A. E. Pashitski, A. Polyanskii, A. Gurevich, J. A. Parrell and D. C. Larbalestier, l’hysica C 246 133 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    F. Irie, Y. Tsujioka and T. Chiba, Supercond. Sci. Technol. 5 S359 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • H. D. Ramsbottom
    • 1
  • H. Ito
    • 1
  • T. Horita
    • 1
  • K. Matsuno
    • 1
  • K. Osamura
    • 1
  1. 1.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan

Personalised recommendations