Advertisement

Selection of Tokamak Toroidal Field Coil Case Structural Materials

  • F. M. G. Wong
  • N. A. Mitchell
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

The toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) are each D-shaped with a bore of about 10 by 15 meters and a perimeter of about 42 meters. Each coil, which operates at 4.5 K, consists of a superconducting winding contained and largely supported by inner stainless steel plates and an outer stainless steel case. The case, approximately 470 tonnes, will be fabricated using thick plate and forged sections of austenitic stainless steel which are welded together to form the D-shaped coil. The effects of alloy chemistry and microstructure on cryogenic materials properties are reviewed, and the applicability of various materials for use in the ITER TF coil case are assessed. Potential case structural materials are all classified as austenitic stainless steels, and their designations are as follows: AISI 316LN, Japanese Cryogenic Steel (JCS, Japan), and 0.03C-20Cr-16Ni-6Mn RF Steel (Russia Federation). Based on this assessment, target 4 K base metal properties are a minimum 0.2% offset yield strength of 1000 MPa and a minimum fracture toughness of 200 MPa√m. Weld metal target material properties should be about 90% of the base metal values.

Keywords

Yield Strength Fracture Toughness Austenitic Stainless Steel Toroidal Field International Thermonuclear Experimental Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Reed, Recent Advances in the Development of Cryogenic Steels, Supercollider 3, J. Nonte ed., Plenum Press, New York (1991), pp. 91–106.Google Scholar
  2. N.J. Simon and R.P. Reed, Adv. in Crvo. Eng. Mat.,Vol 34, Plenum Press, New York (1988).Google Scholar
  3. 3.
    R.P. Reed, JOM, March 1989, pp. 16–21.Google Scholar
  4. 4.
    S. Yamamoto et al., Adv. in Cryo. Eng. Mat., Vol.32, Plenum Press, New York (1986), pp. 57–64.Google Scholar
  5. 5.
    T. Sakamoto et al., Adv. in Crvo. Eng. Mat., Vol 32, Plenum Press, New York (1986), pp. 65–71.CrossRefGoogle Scholar
  6. 6.
    P.T. Purtscher et al., Adv. in Cryo. Mut., Vol 34, Plenum Press, New York (1988), pp. 191–198.Google Scholar
  7. 7.
    R.P. Reed et al., Adv. in Cryo. Eng. Mut., Vol. 32, Plenum Press, New York (1986), pp. 33–42.CrossRefGoogle Scholar
  8. 8.
    H. Nakajima et al., ISIJ Liternational, 30: 8, (1990), pp. 567–578.CrossRefGoogle Scholar
  9. E.S. Drexler, et al., Adv. in Cryo. Eng. Mut.,Vol. 40, Plenum Press, New York (1994), pp. 1199–1206.Google Scholar
  10. 10.
    Y. Takahashi et al., Adv. in Cryo. Eng. Mut., Vol. 28, Plenum Press, New York (1982), pp. 73–81.CrossRefGoogle Scholar
  11. K.A. Yushchenko, Adv. in Cryo. Eng. Mut.,Vol 30, Plenum Press, New York (1984), pp. 271–282.Google Scholar
  12. 12.
    S. Tone et al., Adv. in Crvo. Eng. Mat., Vol 32, Plenum Press, New York (1986), pp. 89–96.CrossRefGoogle Scholar
  13. 13.
    T. Ogawa et al., Welding Research Supplement, June 1990, pp. 205–212.Google Scholar
  14. 14.
    S. Kou, Welding Metallurgy, John Wiley and Sons, New York, 1987.Google Scholar
  15. 15.
    R.L. Tobler et al., Design-Relevant Mechanical Properties of 316-Type Steels for Superconducting Magnets, to be published in Cryogenics. Google Scholar
  16. 16.
    J.F. Lancaster, Metallurgy of Welding, Chapman and Hall, London, 1993.Google Scholar
  17. 17.
    D. Harries, Private communication, July 1997.Google Scholar
  18. 18.
    N.J. Simon and R.P. Reed, J. of Nuel. Mut., Vol 141–143. (1986), pp. 44–48.ADSCrossRefGoogle Scholar
  19. 19.
    C.N. McCowan and T.A. Siewart, Adv. in Cryo. Eng. Mat., Vol. 34., Plenum Press, New York (1988), pp. 335–342.Google Scholar
  20. 20.
    A. Nyilas and H. Krauth. Adv. in Cryo. Eng. Mat.,Vol. 28, Plenum Press, New York (1982) pp. 853863.Google Scholar
  21. 21.
    K.A. Yushchenko et al., Adv. in Cryo. Eng. Mat.,Vol. 40, Plenum Press, New York (1994), pp. 12631266.Google Scholar
  22. 22.
    H. Nakajima et al., Adv. in Cryo. Eng. Mut., Vol. 30, Plenum Press, New York (1984), pp. 219–226.CrossRefGoogle Scholar
  23. 23.
    C. Prioul et al., Proceedings of 14 SOFT, (1986),pp. 1051–1056.Google Scholar
  24. 24.
    Asea Brown Boveri, Fabrication of a Short Length of Wind and React Conductor: Appendix, Final Report, NET 88/745, HIM 20240, May 1990.Google Scholar
  25. 25.
    K. Ishio et al., Trial Fabrication of Heavy Section Base Metal and Welded Joints for ITER TF Coil, presented at ICMC 1997, July 1997.Google Scholar
  26. 26.
    F. Bueltmann et al., Mechanisch-Technologische Untersuchungen an geschweissten stickstofflegierten Chrom-Nickel -Staehlen hei Temperaturen unter 10 K, Schweissen und Schneiden Heft I, (1992), p. 18.Google Scholar
  27. 27.
    K. Ishio, et al., 4K Mechanical Properties of 110 mm Hot Rolled Plates of JJ l and JK2 for ITER TF Coil, to be published in proceedings of MT-15, Oct. 1997.Google Scholar
  28. 28.
    H. Nakajima, Private communication, July 1997.Google Scholar
  29. V.N. Maley et al., Adv. in Cryo. Eng. Mat.,Vol. 40, Plenum Press, New York (1994), pp. 1267–1274.Google Scholar
  30. 30.
    K.A. Yushchenko et al., Adv. in Cryo. Eng. Mat., Vol. 36, Plenum Press, New York (1990), pp. 1323–1329.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • F. M. G. Wong
    • 1
  • N. A. Mitchell
    • 1
  1. 1.Joint Central Team, Naka JWSITER EDANaka-machi, Naka-gun, Ibaraki-kenJapan

Personalised recommendations