Skip to main content

Low-Temperature Tensile Properties of Fe-Ni Alloys

  • Chapter
Book cover Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 44))

Abstract

Tensile properties at 295, 195, 76, and 4 K were measured for eight face-centeredcubic Fe-Ni alloys, ranging from 36-wt% Ni to pure Ni. The elastic limit, yield and tensile strengths, and elongation to failure are reported. Results indicate that the elastic limit and tensile yield and ultimate strengths increase as the Fe content increases. However, the tensile elongation to failure does not appear to depend on Fe content.

Deformation twins were detected in alloys ranging from Fe-36 wt% Ni to Fe-78 wt% Ni. The stress and strain to initiate detectable deformation twins by means of optical microscopy were measured for these alloys. Results show that the initiation of deformation twinning correlates best with deformation energy (stress × strain). These results are discussed in terms of the stacking-fault energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Reed, Acta Met. 15: 1287 (1967).

    Article  Google Scholar 

  2. H. Dietrich, Nickel-Ber. 25 (3): 36–45 (1967).

    Google Scholar 

  3. D.T. Eash, “Tensile Tests on Invar Sheet at Cryogenic Temperatures,” LA-3192-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico (4 November 1964 ).

    Google Scholar 

  4. F. Lihl and J. Thöny, Arch. Eisenhüttenw. 34: 701–712 (1963).

    Google Scholar 

  5. International Nickel Company, “Some Properties of INCO Nickel Alloys at Low Temperature,” Development and Research Div., International Nickel Company, 76 Wall Street, New York, New York (1965).

    Google Scholar 

  6. International Nickel Company, unpublished data (1956).

    Google Scholar 

  7. E.T. Wessel, scientific paper 8–0103-P1, Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania (15 February 1956), in: The Mechanical Properties of Nickel and Some Nickel Alloys at Low Temperature,“ R.H. Kropschot and W.F. Graham, eds., NBS Report 5024, National Bureau of Standards, Boulder, Colorado ( 25 October 1956 ).

    Google Scholar 

  8. G.W. Geil and N.L. Carwile, in: “Mechanical Properties of Metals at Low Temperatures,” National Bureau of Standards Circular 520, U.S. Government Printing Office, Washington, D.C. (May 1952), pp. 67–96.

    Google Scholar 

  9. S.J. Rosenberg, “Nickel and Its Alloys,” National Bureau of Standards Monograph 106, U.S. Government Printing Office, Washington, D.C. (May 1968).

    Google Scholar 

  10. S.M. Ram, Acta Metall. 33: 1285–1291 (1985).

    Article  Google Scholar 

  11. I. Retat, Phys. Status Solidi (a) 99: 121–130 (1987).

    Article  ADS  Google Scholar 

  12. K. Shibata, M. Kurita, K. Fujita, and T. Fujita, Martensitic transformation and serration of Fe-Ni binary alloys at 4.2 K, presented at International Conference on Martensitic Transformation, Nara, Japan (25–30 August, 1986 ).

    Google Scholar 

  13. W.S. Eberly, Mater. Des. Eng. (July 1963).

    Google Scholar 

  14. O. Dahl, Z. Metallkd. 24: 107–111 (1932).

    Google Scholar 

  15. J.G. Thompson, “Nickel and Its Alloys,” National Bureau of Standards Circular 592, U.S. Government Printing Office, Washington, D.C. (5 February 1958 ).

    Google Scholar 

  16. K.A. Warren and R.P. Reed, “Tensile and Impact Properties of Selected Materials from 20 to 300°K,” National Bureau of Standards Monograph 63, U.S. Government Printing Office, Washington, D.C. (28 June 1963 ).

    Google Scholar 

  17. W D Jenkins and T.G. Digges, J. Res. Natl. Bur. Stand. 48 (4): 313–321 (1952).

    Article  Google Scholar 

  18. R.P. Reed, R.L. Tobler, and J.W. Elmer, in: “Proceedings of the International Cryogenic Materials Conference, Kobe, Japan,” Butterworths, London (1983), pp. 98–103.

    Google Scholar 

  19. B.E.P. Beeston, private communication, GEC-AEI Electronics, Ltd., Harlow, Essex, England (2 April 1968 ).

    Google Scholar 

  20. R.L. Tobler, R.P. Reed, and D.S. Burkhalter, in: “Advances in Cryogenic Engineering (Materials),” vol. 26, Plenum, New York (1980), pp. 107–119.

    Chapter  Google Scholar 

  21. R.P. Reed and J.M. Arvidson, in: “Advances in Cryogenic Engineering (Materials),” vol. 30, Plenum, New York (1984), pp. 263–270.

    Chapter  Google Scholar 

  22. J. Echigoya, S. Hayashi, and M. Yamamoto, Phys. Stat. Solidi (a) 14: 463–471 (1972).

    Article  ADS  Google Scholar 

  23. H. Flor, H.J. Gudladt, and C. Schwink, Acta Metall. 28: 1611–1619 (1980).

    Article  Google Scholar 

  24. Proc. Int. Symp. on The Invar Problem, J. Magn. Magn. Mater. 10: 1–324 (1979).

    Google Scholar 

  25. H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2 (3): 531–618 (1974).

    Article  ADS  Google Scholar 

  26. R.J. Weiss, Proc. Phys. Soc. 82: 281–288 (1963).

    Article  ADS  Google Scholar 

  27. R.P. Reed and R.E. Schramm, J. Appl. Phys. 40 (9): 3453–3458 (1969).

    Article  ADS  Google Scholar 

  28. G.F. Bolling and R.H. Richman, Philos. Mag. B19: 247–264 (1969).

    Article  ADS  Google Scholar 

  29. R.P. Reed, Philos. Mag. 15 (137): 1051–1055 (1967).

    Article  ADS  Google Scholar 

  30. R.P. Reed, unpublished data measured at the National Institute of Standards and Technology, Boulder, Colorado (1996).

    Google Scholar 

  31. I. Retat, T. Steffens, and C. Schwink, Phys. Stat. Solidi (a) 92: 507–510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reed, R.P. (1998). Low-Temperature Tensile Properties of Fe-Ni Alloys. In: Balachandran, U.B., Gubser, D.G., Hartwig, K.T., Reed, R.P., Warnes, W.H., Bardos, V.A. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9056-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9056-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9058-0

  • Online ISBN: 978-1-4757-9056-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics