Advertisement

Low-Temperature Tensile Properties of Fe-Ni Alloys

  • Richard P. Reed
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

Tensile properties at 295, 195, 76, and 4 K were measured for eight face-centeredcubic Fe-Ni alloys, ranging from 36-wt% Ni to pure Ni. The elastic limit, yield and tensile strengths, and elongation to failure are reported. Results indicate that the elastic limit and tensile yield and ultimate strengths increase as the Fe content increases. However, the tensile elongation to failure does not appear to depend on Fe content.

Deformation twins were detected in alloys ranging from Fe-36 wt% Ni to Fe-78 wt% Ni. The stress and strain to initiate detectable deformation twins by means of optical microscopy were measured for these alloys. Results show that the initiation of deformation twinning correlates best with deformation energy (stress × strain). These results are discussed in terms of the stacking-fault energy.

Keywords

Yield Strength Ultimate Strength Elastic Limit Nickel Content Deformation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Reed, Acta Met. 15: 1287 (1967).CrossRefGoogle Scholar
  2. 2.
    H. Dietrich, Nickel-Ber. 25 (3): 36–45 (1967).Google Scholar
  3. 3.
    D.T. Eash, “Tensile Tests on Invar Sheet at Cryogenic Temperatures,” LA-3192-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico (4 November 1964 ).Google Scholar
  4. 4.
    F. Lihl and J. Thöny, Arch. Eisenhüttenw. 34: 701–712 (1963).Google Scholar
  5. 5.
    International Nickel Company, “Some Properties of INCO Nickel Alloys at Low Temperature,” Development and Research Div., International Nickel Company, 76 Wall Street, New York, New York (1965).Google Scholar
  6. 6.
    International Nickel Company, unpublished data (1956).Google Scholar
  7. 7.
    E.T. Wessel, scientific paper 8–0103-P1, Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania (15 February 1956), in: The Mechanical Properties of Nickel and Some Nickel Alloys at Low Temperature,“ R.H. Kropschot and W.F. Graham, eds., NBS Report 5024, National Bureau of Standards, Boulder, Colorado ( 25 October 1956 ).Google Scholar
  8. 8.
    G.W. Geil and N.L. Carwile, in: “Mechanical Properties of Metals at Low Temperatures,” National Bureau of Standards Circular 520, U.S. Government Printing Office, Washington, D.C. (May 1952), pp. 67–96.Google Scholar
  9. 9.
    S.J. Rosenberg, “Nickel and Its Alloys,” National Bureau of Standards Monograph 106, U.S. Government Printing Office, Washington, D.C. (May 1968).Google Scholar
  10. 10.
    S.M. Ram, Acta Metall. 33: 1285–1291 (1985).CrossRefGoogle Scholar
  11. 11.
    I. Retat, Phys. Status Solidi (a) 99: 121–130 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    K. Shibata, M. Kurita, K. Fujita, and T. Fujita, Martensitic transformation and serration of Fe-Ni binary alloys at 4.2 K, presented at International Conference on Martensitic Transformation, Nara, Japan (25–30 August, 1986 ).Google Scholar
  13. 13.
    W.S. Eberly, Mater. Des. Eng. (July 1963).Google Scholar
  14. 14.
    O. Dahl, Z. Metallkd. 24: 107–111 (1932).Google Scholar
  15. 15.
    J.G. Thompson, “Nickel and Its Alloys,” National Bureau of Standards Circular 592, U.S. Government Printing Office, Washington, D.C. (5 February 1958 ).Google Scholar
  16. 16.
    K.A. Warren and R.P. Reed, “Tensile and Impact Properties of Selected Materials from 20 to 300°K,” National Bureau of Standards Monograph 63, U.S. Government Printing Office, Washington, D.C. (28 June 1963 ).Google Scholar
  17. 17.
    W D Jenkins and T.G. Digges, J. Res. Natl. Bur. Stand. 48 (4): 313–321 (1952).CrossRefGoogle Scholar
  18. 18.
    R.P. Reed, R.L. Tobler, and J.W. Elmer, in: “Proceedings of the International Cryogenic Materials Conference, Kobe, Japan,” Butterworths, London (1983), pp. 98–103.Google Scholar
  19. 19.
    B.E.P. Beeston, private communication, GEC-AEI Electronics, Ltd., Harlow, Essex, England (2 April 1968 ).Google Scholar
  20. 20.
    R.L. Tobler, R.P. Reed, and D.S. Burkhalter, in: “Advances in Cryogenic Engineering (Materials),” vol. 26, Plenum, New York (1980), pp. 107–119.CrossRefGoogle Scholar
  21. 21.
    R.P. Reed and J.M. Arvidson, in: “Advances in Cryogenic Engineering (Materials),” vol. 30, Plenum, New York (1984), pp. 263–270.CrossRefGoogle Scholar
  22. 22.
    J. Echigoya, S. Hayashi, and M. Yamamoto, Phys. Stat. Solidi (a) 14: 463–471 (1972).ADSCrossRefGoogle Scholar
  23. 23.
    H. Flor, H.J. Gudladt, and C. Schwink, Acta Metall. 28: 1611–1619 (1980).CrossRefGoogle Scholar
  24. 24.
    Proc. Int. Symp. on The Invar Problem, J. Magn. Magn. Mater. 10: 1–324 (1979).Google Scholar
  25. 25.
    H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2 (3): 531–618 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    R.J. Weiss, Proc. Phys. Soc. 82: 281–288 (1963).ADSCrossRefGoogle Scholar
  27. 27.
    R.P. Reed and R.E. Schramm, J. Appl. Phys. 40 (9): 3453–3458 (1969).ADSCrossRefGoogle Scholar
  28. 28.
    G.F. Bolling and R.H. Richman, Philos. Mag. B19: 247–264 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    R.P. Reed, Philos. Mag. 15 (137): 1051–1055 (1967).ADSCrossRefGoogle Scholar
  30. 30.
    R.P. Reed, unpublished data measured at the National Institute of Standards and Technology, Boulder, Colorado (1996).Google Scholar
  31. 31.
    I. Retat, T. Steffens, and C. Schwink, Phys. Stat. Solidi (a) 92: 507–510.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Richard P. Reed
    • 1
  1. 1.Cryogenic Materials, Inc.BoulderUSA

Personalised recommendations