Advertisement

Non-Equilibrium Segregation of Manganese in High-Mn Cryogenic Steels

  • D. Y. Sun
  • K. S. Xue
  • Z. R. Xu
  • B. Wang
  • J. J. Zhang
  • J. F. Yi
  • W. Wang
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

The non-equilibrium segregation of manganese in austenitic High-Mn cryogenic steels was observed in our previous work. In order to get more thorough understanding, a detailed program was carried on. The non-equilibrium segregation of manganese was determined by both AES and TEM-EDS. The effect of manganese content and other alloying elements on the manganese segregation were investigated. The manganese segregation was also influenced by solution treatment temperature and cooling rate. The kinetic process of non-equilibrium segregation of manganese is discussed.

Keywords

Cool Rate Manganese Content Critical Cool Rate Solution Treatment Temperature Segregation Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. K. S. Xue. “The Low Temperature Brittle Fracture of Austenitic Fe-Mn Alloys,” LBL 20938, Lawrence Berkeley Laboratory, Berkeley(1986).Google Scholar
  2. 2.
    R. G. Faulkner. Non-equilibrium grain-boundary segregation in auslenitic alloys. J. Materials Sci. 16: 373 (1981).Google Scholar
  3. 3.
    P. Doig and P. E. J. Flewitt, Nonequilibrium solute segregation to austenite grain boundaries in low alloy ferritic and austenitic steels, Met. Trans. A 18A: 399 (1987).Google Scholar
  4. 4.
    T. M. Williams. A. M. Stoneham, and D. R. Harris, The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel, Met. Sci. 14(Jan. 1976 ).Google Scholar
  5. 5.
    K. S. Xue. Z. L. Rong, X. M. Jing and J. X. Fang. The improvement of low temperature toughness of high manganese austenitic steels. in “Cryogenic Materials ‘88,” R. P. Reed, Z. S. Xing and E. W. Collings, eds., International Cryogenic Materials Conference. Boulder (1988) p501.Google Scholar
  6. 6.
    K. S. Xue. et. al., Effect of alloying elements on properties of high manganese austenitic cryogenic steels, Mater. Mech. Engng. (in Chinese) 16: 18 (1992).Google Scholar
  7. 7.
    S. H. Song, T. D. Xu, Z. X. Yuan and S. Z. Yu, Determination of the critical time and critical cooling rate for nonequilibriuni segregation of boron, J. Wuhan Iron and Steel University (ni Chinese) 14: 25B (1991).Google Scholar
  8. 8.
    Sanhong Zhang, Xinlai He, Youyi Clin and T. Ko, Nonequilibrium segregation of solute to grain boundary. J. Mater. Sci. 29: 2633 (1994).Google Scholar
  9. 9.
    K. S. Xue. D. Y. Sun, Z. R. XU, B. Wang, J. Li, J. Q. Shen and W. Wang, The mechanism of the effect of boron on the low temperature toughness of cryogenic manganese steel, to be published in Mater. Mech. Engng. (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • D. Y. Sun
    • 1
  • K. S. Xue
    • 2
  • Z. R. Xu
    • 3
  • B. Wang
    • 2
  • J. J. Zhang
    • 2
  • J. F. Yi
    • 2
  • W. Wang
  1. 1.Research Institute of Machinery Science and TechnologyBeijingChina
  2. 2.Shanghai Research Institute of MaterialsShanghaiChina
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations