Advertisement

Calculating the Jc, B, T Surface for Commercial Niobium Tin Conductors Using a Reduced State Model

  • M. A. Green
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

This Report presents a method for calculating the Jc, B, T critical surface for commercial grade niobium tin given an effective Tc and Bc2 and Jc over a range of magnetic inductions B. Given the effective Tc and Bc2 and Jc, one can estimate the Jc over a range of magnetic inductions from 0.1 T to 0.8 times effective Bc2 and a range of temperatures from 1.5 K to about 14 K. The effects of conductor strain can also be estimated using this method. A comparison between calculated values of Jc and measurements is illustrated for a number of cases. The method presented in this report can be used to estimate the performance of niobium tin in magnets at temperatures different from those where measured data is available. The method of calculating the Jc can also be used to estimate the effects of superconductor magnetization on the field quality at low fields.

Keywords

Magnetic Induction Critical Current Density Lawrence Berkeley Laboratory Cryogenic Engineer Niobium Titanium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Green, IEEE Trans.MAG-25, No. 2, p 2119, (1989).Google Scholar
  2. 2.
    M. A. Green, “Generation of the Jc, Hc, Tc Surface for Commercial Superconductor Using Reduced State Parameters,” Lawrence Berkeley Lab Report LBL 24875 (1988)Google Scholar
  3. 3.
    L. T. Summers et al., IEEE Trans. MAG-27, No. 2, p 2041, (1991)Google Scholar
  4. 4.
    M. Suenaga et al., Phys. Rev. Let. 66, No. 13, p 1777, (1991)CrossRefGoogle Scholar
  5. 5.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys Rev, 147, p 295, (1966)Google Scholar
  6. 6.
    J. W. Ekin, IEEE Trans. MAG-15, No. 1, p 197, (1979).Google Scholar
  7. 7.
    J. W. Ekin, IEEE Trans. MAG-17, No. 1, p 658, (1981).Google Scholar
  8. 8.
    M. Garber, A. K. Ghosh, and W. B. Sampson, IEEE Trans. MAG-25, No. 2, p 1940, (1989)Google Scholar
  9. 9.
    D. B. Hampshire and D. C. Larbalestier,IEEE Trans. MAG-25, No. 2, p 1956, (1989)CrossRefGoogle Scholar
  10. 10.
    P. Aron and G. W. Ahlgren, Advances in Cryogenic Engineering 13, p 21, (1967)Google Scholar
  11. 11.
    C. R. Spencer et al., IEEE Trans. MAG-15, No. 1, p 76, (1979)CrossRefGoogle Scholar
  12. 12.
    J. A. Eukelboom, et al., IEEE Trans. MAG-25, No. 2, p 1968, (1989).Google Scholar
  13. 13.
    P. I. Dolgosheev et al.,Advances In Cryogenic Engineering 36, p 161, (1990)CrossRefGoogle Scholar
  14. 14.
    M. Thoener et al., IEEE Trans. MAG-27, No. 2, p 2027, (1991)Google Scholar
  15. 15.
    J. C. McKinnel et al., Advances in Cryogenic Engineering 38, p 567, (1992)Google Scholar
  16. 16.
    S. Sakai et al., Advances In Cryogenic Engineering 3, p 595, (1992)Google Scholar
  17. 17.
    M.Takayasu et al.,Advances In Cryogenic Engineering 3, p 619, (1992)Google Scholar
  18. 18.
    J. L. Duchateau et al., IEEE Trans. Appl. S/C-3, No. 1, p 1002, (1993)CrossRefGoogle Scholar
  19. 19.
    A. Ghosh private communication concerning magnetization measurements of niobium tin, niobium titanium tin, and niobium tantalum tin, (1993)Google Scholar
  20. 20.
    P. A. Sanger et al., IEEE Trans. MAG-17, No. 1, p 666, (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. A. Green
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations